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Current spike sorting methods focus on clustering neurons’ characteristic
spike waveforms. The resulting spike-sorted data are typically used to
estimate how covariates of interest modulate the firing rates of neurons.
However, when these covariates do modulate the firing rates, they pro-
vide information about spikes’ identities, which thus far have been ig-
nored for the purpose of spike sorting. This letter describes a novel ap-
proach to spike sorting, which incorporates both waveform information
and tuning information obtained from the modulation of firing rates.
Because it efficiently uses all the available information, this spike sorter
yields lower spike misclassification rates than traditional automatic spike
sorters. This theoretical result is verified empirically on several examples.
The proposed method does not require additional assumptions; only its
implementation is different. It essentially consists of performing spike
sorting and tuning estimation simultaneously rather than sequentially,
as is currently done. We used an expectation-maximization maximum
likelihood algorithm to implement the new spike sorter. We present the
general form of this algorithm and provide a detailed implementable
version under the assumptions that neurons are independent and spike
according to Poisson processes. Finally, we uncover a systematic flaw of
spike sorting based on waveform information only.

1 Introduction

Extracellular electrodes are commonly used to monitor populations of neu-
rons. The signal collected at an electrode is a mixture of activities from
different neurons, corrupted by noise. Spike sorting consists of finding out
how many neurons contributed to the recorded data and determining which
neurons produced which spikes. Many spike-sorting solutions have been
proposed, all based on clustering characteristic features of the recorded
spike waveforms (see Lewicki, 1998, for a review). Spike-sorting papers
generally focus on two broad problems: feature selection and clustering
techniques. Features can be raw waveform measurements or projections
onto lower-dimensional spaces, such as principal components. Full or re-
duced measurements are numerical vectors that can be treated as points in a
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high-dimensional space. Spike sorting is achieved by identifying clusters
in this cloud of points, which correspond to single neurons. Clustering
techniques are many and range from ad hoc procedures (e.g., Fee, Mitra,
& Kleinfeld, 1996), nonparametric techniques (e.g., k-means; Salganicoff,
Sarna, Sax, & Gerstein, 1988), neural networks (Ohberg, Johansson,
Bergenheim, Pedersen, & Djupsjobacka, 1996), to model-based clustering
using mixtures of distributions (e.g., Lewicki, 1994; Sahani, Pezaris, & An-
dersen, 1997; Shoham, Fellows, & Normann, 2003). In this letter, we focus
on the latter approach, often referred to as automatic spike sorting, because
it requires less subjective judgment to classify spikes, provides a statistically
complete and efficient solution to the spike clustering problem, and is well
suited to process many recording electrodes in a short amount of time. This
approach has been evaluated in an experiment and validated with simulta-
neous intracellular and extracellular recordings, and it appears to perform
well in many situations (Harris, Henze, Csicsvari, Hirase, & Buzsaki, 2000).

Spike sorting is typically the preliminary step to understanding how
neurons represent information about covariates such as stimuli in sensory
studies, behavioral correlates in motor studies, or, more generally, envi-
ronmental parameters. This often involves estimating firing rates, tuning
curves or functions, receptive fields, and so on as functions of these covari-
ates, using the spike-sorted data. However, when these covariates modulate
the neurons’ firing rates, they too provide information about spike iden-
tities, which thus far has been ignored for the purpose of spike sorting.
To see this, imagine an electrode that records two neurons whose tuning
curves are modulated by some covariate c. Imagine that the first neuron
spikes only when c1 < c < c2 and that the second neuron spikes only when
c2 < c < c3, so they never spike together. Traditional spike sorters will as-
sign a spike recorded at the electrode to one of the two neurons based on
features of the recorded waveform, which might lead to a misclassification
error if the neurons’ waveform clusters overlap. But we can classify spikes
with perfect confidence if we use c for spike sorting. Indeed, if we observe
that c1 < c < c2 when a spike is detected at the electrode, then the spike
must have been produced by neuron 1. If c2 < c < c3, then it is neuron 2
that must have spiked.

We propose a new automatic spike sorter that combines spike waveform
information and tuning information. Because it uses more information, it
yields lower spike misclassification rates than traditional automatic spike
sorters do. The proposed method does not require additional assumptions;
only its implementation is different. It essentially consists of performing
spike-sorting and tuning estimation simultaneously rather than sequen-
tially, as is currently done. We present the general form of the EM algorithm
we developed to estimate the new spike sorter and provide a detailed im-
plementable version under the assumptions that neurons are independent
and spike according to Poisson processes. We illustrate the new sorter and
its properties based on several simulated experiments.
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2 Methods

Consider a single electrode that records I neurons. We collect the electrode
spike train (EST) by thresholding its bandpassed voltage signal. When a
spike is detected at time t, we record waveform measurements, which we
denote by at . The methods presented in this letter apply generally, so at can
be the raw waveform or any reduction, such as principal components (PCs).
We also record the values ct of covariates thought to modulate neurons that
are spiking. For example, in section 3.1, ct = dt is the angular direction of
a moving hand in a movement decoding experiment, while in section 3.3,
ct = t is the experimental time of a designed experiment. Once the electrode
spike train is recorded, we divide time in bins of length δ that are small
enough so that at most one spike can occur in a bin. Our illustrations all use
δ = 1 msec. Then our observed data are a spike train z = (zt, t = 1, . . . , T),
where zt = 1 (0) indicates that the electrode voltage did (did not) exceed
the threshold at time t, the recorded waveform measurements a = (at, t =
1, . . . , T)1, and the covariates c = (ct, t = 1, . . . , T).

The EST z is the aggregate of the I neurons’ spike trains yi = (yit, t =
1, . . . , T), i = 1, . . . , I . The yi’s are not observed directly, and it is the pur-
pose of spike sorting to estimate them by assigning spikes to neurons based
on classifying the waveform measurements at . To develop our algorithm,
it is useful to associate with a spike at t, the unobserved I -dimensional
binary latent vector xt = (x1t, . . . xI t), where xit = 1 (0) means that neuron
i did (did not) spike at t. When zt = 0 (no spike was recorded at t), xt is a
vector of zeros (no neuron spiked). When zt = 1, all we know is that xt is
not identically zero, and we let X denote the set of (2I − 1) distinct values xt

can take, which give all possible subsets of the I neurons spiking approxi-
mately together to produce a spike at t. For example, if a spike is detected at
an electrode that records I = 2 neurons, the combinations of neurons that
could have produced that spike can take 22 − 1 = 3 values, x = (1, 0) ≡ 10,
(0, 1) ≡ 01 or (1, 1) ≡ 11, depending on whether neuron 1 or 2 spiked alone
or together. The complete set of latent variables is x = (xt, t = 1, . . . , T).
In statistical jargon, (z, x) is a latent marked point process with x as the
unobserved marking variable.

2.1 Classic Automatic Spike Sorting Based on Waveform Information.
Automatic spike sorting assumes that waveform features (WFs) at originate
from one of several components, which typically correspond to I different
neurons. To explicitly allow for neurons spiking together, we instead as-
sume that at originates from one of card(X ) = 2I − 1 components, each
corresponding to a combination x ∈ X of neurons spiking approximately

1Waveform measurements are seldom collected when the electrode voltage is below
threshold (zt = 0). Missing values for at when zt = 0 do not affect our method.
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together to produce a spike. This choice is important to identify not only
joint spikes but also individual neurons’ spikes when the EST is contami-
nated by noise, as we illustrate later. Assuming that each spiking combina-
tion x accounts for a proportion π∗

x of the spikes, so that
∑

x∈X π∗
x = 1, and

that the distribution of spike WFs from that combination has distribution
f ∗
x , the probability distribution of WFs is

f ∗(a ) =
∑
x∈X

π∗
x f ∗

x (a ). (2.1)

The superscript asterisk designates the true proportions and true distribu-
tions that give rise to the data, which distinguish them from the models
we will later fit to the data. Estimation is treated in sections 2.3 and 2.4.
Automatic spike sorting relies on Bayes’ rule to obtain the probability that
a spike with WF a was produced by x, that is,

P∗(x | a ) = π∗
x f ∗

x (a )
f ∗(a )

, (2.2)

where the denominator is equation 2.1 and the numerator is its summands.
The spike is then assigned to the combination x† with the highest posterior
probability,

x†(a ) = arg max
x∈X

P∗(x | a ),

with corresponding allocation for neuron i = 1, . . . , I , the ith component
of x†(a ), x†

i (a ). We apply this spike-sorting rule to each spike observed at
the electrode and denote by x†i the estimated spike train of neuron i .

The result of spike sorting is rarely perfect. In the ideal case, when the
variabilities of each neuron’s WFs are smaller than the variability between
WFs from different neurons, WFs will form distinct clusters and neurons
can be isolated perfectly. Then x†i = yi , the true spike train of neuron i .
More often, clusters overlap so that the WFs that belong to overlapping
regions cannot be classified with perfect confidence. Spike misclassification
errors are unavoidable. However, if equation 2.1 is indeed the distribution
of the data, the Bayes classification rule in equation 2.2 is known to be
optimal, which means that it has the lowest spike misclassification rate of
all spike-sorting rules (see e.g., Wasserman, 2004). But as we show in the
next section, equation 2.1 does not use all the information in the data, so
that the traditional automatic spike sorter is not fully efficient.

2.2 Incorporating Tuning Information for Spike Sorting. Traditional
automatic spike sorting starts with the mixture in equation 2.1 to describe
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the distribution of spike WFs. This description ignores the information pro-
vided by firing rate modulating covariates c. We adopt the same approach
to develop our spike sorter, but we let the distribution of WFs depend on c.
This gives

f ∗(a | c) =
∑
x∈X

π∗
x (c) f ∗

x (a | c),

where f ∗
x (a | c) is the distribution of WFs produced by neuron combination

x when the covariate takes value c. It reduces to f ∗
x (a ), since waveforms are

characteristic of the neurons that produce them and so should not depend on
behavioral correlates. If c includes the experimental time of an experiment,
this reduction also implies that spike waveform dynamics are assumed to
be stationary. We comment on the nonstationary case in the discussion. The
term π∗

x (c) is the probability that neuron combination x spikes when the
covariate takes value c. It is a function of the neurons’ firing rates. To see
that, consider an electrode that records I = 2 neurons that have true tuning
curves λ∗

i (c), i = 1, 2, with λ∗
i (c) expressed in spikes per msec. Suppose

that the duration of neurons’ waveforms is such that substantially different
waveforms are recorded whenever two spike peaks are separated by less
than γ msec. Then the probability that neuron i spikes when the covariate
is c is λ∗

i (c), and the probabilities that this spike is contaminated or not by a
spike from the other neuron are 2γ λ∗

j (c) and 1 − 2γ λ∗
j (c), j �= i , respectively.

Therefore, if we assume that neurons spike independently, the probability
π10(c) that neuron 1 spikes alone is proportional to λ∗

1(c)[1 − 2γ λ∗
2(c)]. Listing

all neuron combinations gives

π∗
x (c) ∝

⎧⎪⎨⎪⎩
λ∗

1(c)[1 − 2γ λ∗
2(c)] if x = (1, 0)

λ∗
2(c)[1 − 2γ λ∗

1(c)] if x = (0, 1)

2γ λ∗
1(c)λ∗

2(c) if x = (1, 1),

(2.3)

where ∝ stands for “proportional to.” The proportionality constant is
such that the probabilities sum to one. This constant is not one, because
we do not consider the combination x = (0, 0) when a spike is recorded
at the electrode. To illustrate equation 2.3, suppose that both neurons
spike independently according to Poisson processes with constant rates
100 Hertz. Suppose also that waveforms are 2 msec long and that a sin-
gle, substantially different, waveform is recorded whenever two spikes
overlap by 0.5 msec or more (i.e., whenever two spike peaks are within
γ = 1.5 msec). Consider a 1 second interval in which neuron 1 happens
to fire 100 times. Then the set of intervals formed by taking times that lie
within 1.5 msec of the peak of a spike from neuron 1 occupies a total of
300 msec. Thus, on average, 300 of 1000 of the spikes from neuron 2 will
overlap with spikes from neuron 1. A typical case would thus have 30
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overlaps and 70 clean spikes from each of the two neurons. These num-
bers match equation 2.3; indeed, λ∗

1(c)[1 − 2γ λ∗
2(c)] = λ∗

2(c)[1 − 2γ λ∗
1(c)] =

0.1[1 − 2 × 1.5 × 0.1] = 0.07 and 2γ λ∗
1(c)λ∗

2(c) = 2 × 1.5 × 0.1 × 0.1 = 0.03,
which gives the correct ratio of single and joint spikes.

Generalizing to I independent neurons, we obtain

π∗
x (c) = 1

κ∗(c)

I∏
i=1

(2γ )−1[2γ λ∗
i (c)]xi [1 − 2γ λ∗

i (c)](1−xi ), (2.4)

where xi are the I components of x, and κ∗(c) is such that
∑

x∈X π∗
x (c) = 1,

which yields

κ∗(c) = (2γ )−1

(
1 −

I∏
i=1

(1 − 2γ λ∗
i (c))

)
. (2.5)

Equation 2.5 is also one minus the probability that no neuron spikes in a
time bin of duration 2γ , rescaled by 2γ . It is therefore the probability of
observing a spike at the electrode when the covariate has value c, in units
of spikes per msec. That is, κ∗(c) is the electrode’s firing rate.

Putting this together, the distribution of WFs conditional on c is

f ∗(a | c) =
∑
x∈X

π∗
x (c) f ∗

x (a ), (2.6)

where π∗
x (c) are defined by equation 2.4 and 2.5, and f ∗

x (a ) are the same
WFs’ distributions we used in equation 2.1. Equation 2.6 specifies a different
mixture distribution for the WFs for each value of c. In contrast, equation 2.1
describes the distribution of the WFs if we ignore the information provided
by c. If neurons are not tuned to c, then equation 2.6 reduces to equation 2.1
mathematically and logically. Note also that the integral of π∗

x (c) over the
observed values of c is equal to π∗

x in equation 2.1, which will be useful to
compare spike-sorting schemes.

Just as in the previous section, automatic spike sorting is carried out by
using Bayes’ rule to calculate the probability that a spike with WF a was
produced by neuron combination x, given that the covariate has value c,

P∗(x | a , c) = π∗
x (c) f ∗

x (a )
f ∗(a | c)

, (2.7)

and the spike is allocated to the neurons in x† such that

x†(a | c) = arg max
x

P∗(x | a , c),
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with corresponding allocation for neuron i = 1, . . . , I the ith component
x†

i (a | c).
As with traditional spike sorters, perfect spike classification is rare. How-

ever, the proposed spike sorter incorporates all the information available
about spike identities, and it is derived from the optimal Bayes’ rule in
equation 2.7, so it has the lowest spike misclassification rate of all classifica-
tion rules. In particular, it has a lower spike misclassification rate than the
traditional automatic spike sorter described in section 2.1.

2.2.1 Special Case: Classic and Proposed Approaches Are Equivalent When
Waveform Features Clusters Are Perfectly Separated. When WFs clusters are
perfectly separated, a spike with WF a has f ∗

x (a ) = 0 for all x ∈ X , except
for the particular x that produced the spike. Hence equations 2.2 and 2.7
both equal one if the spike was produced by neuron combination x, and
zero otherwise. This shows that the new spike-sorting rule does not depend
on the covariate c, so it reduces to the traditional spike-sorting rule. Tuning
function estimates will thus be the same under both approaches, given the
same tuning model.

2.2.2 Automatic Spike Sorting Based on Tuning Information Only. Current
spike-sorting methods use waveform information and ignore tuning infor-
mation. The reverse could be done, as in Ventura (2008). To do that, we
assume that f ∗

x , x ∈ X , are all equal, so that they carry no discriminating
information about waveforms. Then equation 2.7 becomes

P∗(x | c) = π∗
x (c), (2.8)

which implies that a spike recorded when the covariate takes value c is
allocated to the combination of neurons that has the highest probabil-
ity of spiking when the covariate is c, regardless of the spike waveform
measurements. To illustrate this, consider the introductory example once
more: an electrode records two neurons whose tuning curves are such that
λ∗

1(c) = 0 except when c1 < c < c2, and λ∗
2(c) = 0 except when c2 < c < c3.

Imagine that a spike is recorded at the electrode when c takes some value
c0 ∈ [c2, c3]. Then using equations 2.4 and 2.8, we calculate P∗(x = 10 | c0) ∝
0 × [1 − λ∗

2(c0)] = 0, P∗(x = 01 | c0) ∝ λ2(c0) × [1 − 0] > 0, and P∗(x = 11 |
c0) ∝ 0 × λ∗

2(c0) = 0. The value of x that maximizes equation 2.8 is therefore
x†(c0) = 01, so that the spike is allocated to neuron 2, the correct decision.
Figure 3 provides another example of spike sorting based only on tuning
information.

2.3 Estimation of the Waveform-Based Spike-Sorting Rule. So far we
have used the true proportions π∗

x , distributions f ∗
x , and tuning curves

λ∗
i . In practice, these are unknown and must be estimated from data.
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We approximate f ∗
x (a ) by fx(a;ψx) indexed by parameters ψx , for ex-

ample, normal distributions with means and variance-covariance matrices
ψx = (μx, �x). We approximate λ∗

i (c) by functions λi (c; θi ) that depend on
parameters θi . Although the f ∗s and λ∗s play parallel roles for spike sorting,
WFs are qualitatively invariant to the experiment that produce them, and
models for their distributions have long been evaluated. In contrast, neu-
rons’ tuning properties are not only experiment specific, they are typically
of paramount interest in practice. Therefore, while it is reasonable to use
parametric models for fx , λi should be nonparametric functions unless more
information is available. (This point is discussed further in section 3.) We
denote by 
 = (θi , i = 1, . . . I ), � = (πx, x ∈ X ), and � = (ψx, x ∈ X ) the
combined vectors of parameters. We estimate 
, �, and � by the method of
maximum likelihood (ML), because it makes the most efficient use of data
(Kass, Ventura, & Brown, 2005).

The ML estimate of (�,�) = (πx, ψx, x ∈ X ) needed to estimate equa-
tion 2.1 is the value that maximizes the likelihood function L(�,�), defined
as the joint distribution of the observed data. The data consist of the WFs a,
so

L(�,�) = f (a;�,�). (2.9)

If we assume that WFs at are independent, equation 2.9 reduces to the
product over time bins of f (at;�,�), the model we chose to estimate
equation 2.1, evaluated at at . Likelihoods that arise from mixtures such
as equation 2.1 are well known to be difficult to optimize, and a latent
variable approach is often preferred. We use as latent variables the neuron
combinations xt = (x1t, . . . , xI t) ∈ X that could have produced the spike at
time t, and use an expectation-maximization (EM) algorithm (Dempster,
Laird, & Rubin, 1977) to maximize the log of L(�,�). This is a classic
iterative algorithm, which we now give in its general form. Suppose that
(�(k), �(k)) are the current parameter values and that we want to update
them to (�(k+1), � (k+1)), with the eventual aim of reaching the ML estimator
(�̂, �̂). The EM algorithm obtains (�̂, �̂) by iteratively:

1. (E-step): Calculating

Q
(
�,�,�(k), � (k)) = E

(
log f (a, X;�,�) | a;�(k), � (k)), (2.10)

the expectation of the augmented data log likelihood log f (a, x;�,�)
with respect to the distribution of the latent variables X given the
observed data a, at current estimates (�(k), �(k))

2. (M-step): Maximizing Q(�,�,�(k), � (k)) with respect to (�,�) to
obtain update parameter values (�(k+1), � (k+1))

Mixtures of normal distributions are often used for f (a;�,�), although
Harris et al. (2000) and Shoham et al. (2003) provide convincing evidence
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that t-distributions might be are more appropriate. We use univariate nor-
mal distributions throughout this letter for algorithmic simplicity. It would
be straightforward to use instead t or other distributions deemed more
appropriate, provided an EM algorithm existed or could be developed to
estimate their parameters. For a mixture of univariate normal distributions,
the general EM algorithm given above reduces to:

0. Pick starting values (�(0), � (0)). Repeat steps 1 and 2 until conver-
gence.

1. (E-step): For each recorded WF at , with associated latent variable Xt ,
calculate the responsibilities of at to each of the mixture components,

wxt = P
(
Xt = x | at,�

(k), � (k)) = π
(k)
x fx

(
at;ψ

(k)
x

)
f
(
at;�(k), � (k)) , x ∈ X ,

which is the evaluation of equation 2.2 at (�,�) = (�(k), � (k)).
2. (M-step): Update the parameter estimates: for x ∈ X , calculate

μ(k+1)
x =

∑
t

wxtat

/ ∑
t

wxt

(
σ 2

x

)(k+1) =
∑

t

wxt
(
at − μ(k+1)

x

)2
/ ∑

t

wxt

π (k+1)
x = P(Xt = x) =

∑
t

wxt/N,

where the summations are over time bins that contain a spike and N
is the total number of spikes.

References for the normal mixture EM are numerous (see e.g., Hastie, Tib-
shirani, & Friedman, 2001, sec. 8.5). The case of a mixture of t-distributions
was treated by Shoham et al. (2003) in the context of spike sorting. Fig-
ures 2A and 8A show step-by-step runs of this algorithm applied to two
simulated data sets.

2.4 Estimation of the Waveform and Tuning-Based Spike-Sorting
Rule. Estimation of the proposed spike classification rule involves esti-
mation of 
 and �, the parameters that index the model for equation 2.6.
The ML estimates of (
,�) maximize the joint distribution of the data,

L(
,�) = f (z, a | c;
,�),

where the data consist not only of the WFs a, but also of the electrode spike
train z, which contains tuning information. We use the EM algorithm with
latent variables X to maximize L(
,�). Suppose that 
(k) and �(k) are the
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current parameter values and we want to update them to 
(k+1) and �(k+1).
The EM algorithm obtains the ML estimate of 
 and � by iteratively:

1. (E-step): Calculating

Q
(

,�,
(k), �(k))= E

(
log f (z, a, X | c;
,�) | z, a;
(k), �(k)),

(2.11)

the expectation of the augmented data log likelihood with respect
to the distribution of the latent variables X given the data (z, a), at
current estimates 
(k) and �(k).

2. (M-step): Maximizing Q(
,�,
(k), � (k)) with respect to 
 and � to
obtain parameter updates 
(k+1) and �(k+1).

This algorithm is general and has the same form as the algorithm given in
the previous section.

Next we show that this algorithm reduces to two intertwined EM algo-
rithms, one of which is a basic extension of the algorithm in the previous
section and the other a basic extension of the EM algorithm in Ventura
(2008). We first use basic laws of probability to rewrite the augmented data
likelihood as

f (z, a, x | c;
,�) = f (a | z, x, c;
,�) f (z, x | c;
,�).

The second term reduces to f (z, x | c;
) since without knowledge of a,
the distributions of the spike trains z and x depend on only 
 and the
covariates c. The first term reduces to f (a | x, c;
,�) since knowing x
completely specifies z; indeed, for all t, zt = 1 if and only if xit = 1 for
some i . Now given a spike generated by neuron combination x, its WF a
has distribution fx(a;ψx) independent of spike rate parameters 
. Hence,
f (a | x, c;
,�) reduces to f (a | x, �). For practical reasons, we rewrite
f (a | x, �) = f (a, x;�)/ f (x;�), where f (x;�) reduces to f (x) since with-
out knowledge of a, spike train probabilities do not depend on �. Putting
this together gives

f (z, a, x | c;
,�) = f (a, x;�) f (z, x | c;
)/ f (x),

which we use to rewrite equation 2.11 as

Q
(

,�,
(k), �(k)) = Q1

(
�,
(k), �(k)) + Q2

(

,
(k), � (k))

+Q0
(

(k), �(k)), (2.12)

where

Q1
(
�,
(k), � (k)) = E

(
log f (a, X;�) | z, a;
(k), �(k)), (2.13)

Q2
(

,
(k), � (k)) = E

(
log f (z, X | c;
) | z, a;
(k), � (k)), (2.14)
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and Q0(
(k), �(k)) = −E(log f (X) | z, a;
(k), �(k)). The decomposition in
equation 2.12 suggests that the EM algorithm given above can be reduced
to iteratively (1) calculating and maximizing equation 2.13 with respect to
�, which is similar to the EM algorithm of section 2.3, and (2) calculating
and maximizing equation 2.14 with respect to 
, which is similar to the
EM algorithm for mixtures of spike trains developed in Ventura (2008). The
term Q0 is a constant with respect to � and 
, so does not contribute to
finding the maximum likelihood. The decomposition of the EM algorithm
in two partial steps will yield the ML estimates for � and 
. Indeed, it
is a special case of the partial M-step approach justified by the variational
formulation of Hathaway (1986) and Neal and Hinton (1998).

The only additional element we need to completely specify the algorithm
is the distribution of the latent variables X given data z, a, covariates c, and
parameters 
,�. Assuming that at time t, the WF at and neuron spiking
probabilities do not depend on the past, we simplify the conditional joint
distribution to the product of the marginal distributions over time bins, that
is, P(x | z, a, c;
,�) = ∏T

t=1 P(xt | zt, at, ct;
,�). We first treat the trivial
case: given zt = 0 (no spike at t), then xt = 0 (no neuron spiked) with prob-
ability one. Given zt = 1, the probability that xt = 0 is zero. Otherwise,

P(xt | at, zt = 1, ct;
,�) = πxt (ct;
) fxt (at;ψxt )
f (at, zt = 1 | ct,
,�)

,

which is the probability specified in equation 2.7 for x = xt .2

We now have all the elements to run the EM algorithm to find the ML
estimate of (�,
), which in turn provides estimates of f ∗(a | c) in equa-
tion 2.6 and of the neurons’ tuning curves λ∗

i (c). In the particular case when
f ∗(a | c) is assumed to be a mixture of univariate normal distributions, this
algorithm to reduces to:

0—Pick starting values �(0) and 
(0). Repeat steps 1 and 2 until conver-
gence.

1—Update �

1a. (E-step): For each WF at , with associated latent variable Xt ,
calculate the responsibilities of at to each of the WF mixture
components,

wxt = P
(
Xt = x | at, zt = 1, ct;
(k), �(k)), x ∈ X ,

by evaluating the estimation model for equation 2.7 at (
(k), � (k)).

2Equation 2.7 misses the explicit condition zt = 1. However, this condition was implicit
since then we considered only time bins such that zt = 1
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1b. (M-step): Update �(k) to �(k+1): for x ∈ X , calculate

μ(k+1)
x =

∑
t

wxt at

/ ∑
t

wxt

(
σ 2

x

)(k+1) =
∑

t

wxt
(
at − μ(k+1)

x

)2
/ ∑

t

wxt,

where the sums are over the time bins that contain a spike (zt = 1).
2—Update 


2a. (E-step): For each spike zt = 1, with associated latent variable Xt ,
calculate the responsibilities of zt to each of the I neurons,

eit = E
(
Yit | at, zt = 1, ct;
(k), �(k+1))

= P
(
Yit = 1 | at, zt = 1, ct;
(k), �(k+1))

=
∑

x s.t. xi =1

P
(
Xt = x | at, zt = 1, ct;
(k), �(k+1)),

with probabilities in the summand given by the estimation model
for equation 2.7, and summation over the 2I−1 values of x =
(x1, . . . , xI ) that have xi = 1. Given zt = 0, we have trivially

eit = E(Yit | at, zt = 0, ct;
(k), �(k+1)) = 0.

2b. (M-step): For i = 1, . . . , I , regress eit on ct, t = 1, . . . , T to obtain
θ

(k+1)
i , the parameter of the tuning curve λi (c, θi ).

To distinguish this algorithm from the EM algorithm of the previous
section, we refer to it as the linked EM algorithm, since it merges two
partial EM algorithms. Note that steps 1 and 2 can be executed in any
order. The particular form of step 1 assumes that waveforms are normally
distributed. Distributions other than normal can be used provided an EM
algorithm exists to estimate their parameters. Step 2 assumes that spike
trains are Poisson. Alternatives are discussed in section 4.

Figures 2B, 8B, and 12 show step-by-step runs of the linked EM algorithm
and also illustrate that neurons’ tuning functions can be estimated before
the data are spike-sorted.

2.4.1 Special Case: Perfectly Separated Waveform Features Clusters. As men-
tioned earlier, traditional and proposed approaches yield the same spike-
sorted data in theory when WFs clusters are separated. This remains true in
practice, provided the WFs’ distributions fx are not too badly misspecified.
Indeed in that case, after convergence of the EM algorithms of sections 2.3
and 2.4, the responsibility of WF at to each of the mixture components is
wxt = 1 if at was produced by neuron combination x, and wxt = 0 otherwise.
That is, both spike-sorting rules correctly classify all spikes. The linked EM
algorithm also provides estimates of the tuning functions, which are the
same estimates we would obtain with the traditional approach. Indeed, at
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convergence, the responsibilities of zt to each of the I neurons are eit = 1
if the spike at t was produced either by neuron i alone or jointly with
other neurons and eit = 0 otherwise. Hence the M-step 2b consists of the
regressions of the true neurons’ spike trains on c.

2.4.2 Spike Sorting Based on Only Tuning Information. To spike-sort the
data using only tuning information, all we need is the ML estimate of 
,
which in turn gives an estimate of the spike classification rule in equa-
tion 2.8. To do that, we use the linked EM algorithm, but we set the initial
values ψ

(0)
x to the same constant for all x ∈ X , we let � (k) = �(0) for all iter-

ations k, and we run only step 2 of the algorithm. The linked EM algorithm
effectively reduces to the algorithm of Ventura (2008). Figures 3 and 11B
provide illustrations.

2.5 A Clutter Cluster Serves to Collect Noise and Outlying Spikes. For
automatic spike sorting, WFs at are typically assumed to originate from one
of several components, which implicitly correspond to different neurons.
To explicitly allow for neurons spiking together, we instead assumed that
at originates from one of card(X ) = 2I − 1 components, each correspond-
ing to a combination x ∈ X of neurons spiking approximately together to
produce a spike. This choice is important to identify not only joint spikes
but also individual neurons’ spikes in the low-SNR case, when spikes are
contaminated by noise, as we illustrate in section 3.3. But this choice also
means that the numbers of probabilities π∗

x in equation 2.1 and distributions
f ∗
x (a ) in equations 2.1 and 2.6 increase exponentially with I . Some of these

quantities cannot be estimated accurately with a finite amount of data. For
example, suppose that an electrode records I = 4 neurons, all firing with a
homogeneous Poisson rate of 100 Hz, and that a single, substantially differ-
ent, waveform is recorded whenever two spike peaks are separated by less
than γ = 2 msec. Then 1 second of data would typically contain 51 clean
spikes from each of the I = 4 neurons, 13 overlaps from each of the

(I
2

) = 6
pairs of neurons, 3 overlaps from each of the

(I
3

) = 4 triplets of neurons,
and no occurrence of the 4 neurons spiking approximately together. While
this provides enough data to estimate the π∗

x and f ∗
x (a ) that correspond to

single neuron spikes, the estimates of these components for x ∈ X such that∑
i xi ≥ 2 would be at best too variable to be useful.
A standard solution in classic spike sorting is to use a noise collection

cluster that captures outlier waveforms produced by noise or joint spikes
(Sahani, 1999; Shoham et al., 2003). Hence in practice, equation 2.1 is typi-
cally estimated by the mixture

f (a;�1, �1) =
∑
x∈X1

πx fx(a;ψx) +
⎛⎝1 −

∑
x∈X1

πx

⎞⎠ fclutter (a;ψ0),

(2.15)
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where X1 contains the neuron combinations x that produce enough spikes
to allow estimation of the corresponding fx , fclutter is the garbage collector
distribution used to estimate f ∗

x for all x ∈ X \ X1, and �1 = (πx, x ∈ X1)
and �1 = (ψ0, ψx, x ∈ X1) are the reduced sets of parameters to be esti-
mated. The set X1 is not known a priori but is estimated jointly with equa-
tion 2.1. The simplest method to do that is penalized likelihood, which has
as special cases the Akaike’s information criterion (AIC; Akaike, 1974) and
the Bayesian information criterion (BIC; Schwartz, 1978): competing mod-
els are fitted by maximum likelihood, a score of the form “goodness of fit”
minus “model complexity” is assigned to each model, and the model with
the highest score is selected. The competing models considered here are
equation 2.15 for different sets X1, or rather for different sizes of X1. Indeed,
card(X1) = 3 means that three “arbitrary” components πx fx are fitted to the
observed waveforms, where x presumably, although not certainly, corre-
spond to single neurons rather than to combinations of neurons. Hence the
chosen model typically has X1 = (x ∈ X :

∑
i xi = 1), while fclutter covers

the waveforms from joint spikes and noise.
We adopt the same approach with the proposed spike sorter. In practice,

we estimate equation 2.6 with the mixture

f (a; c, �2,
) =
∑
x∈X2

πx(c;
) fx(a;ψx)

+
⎛⎝1 −

∑
x∈X2

πx(c;
)

⎞⎠ fclutter (a;ψ0), (2.16)

where �2 = (ψ0, ψx, x ∈ X2) is the reduced set of parameters for WF distri-
butions, while 
 remains the full set of tuning function parameters. Again,
X2 is determined by penalized likelihood. Because πx(c;
) depends on tun-
ing functions, we must specify the exact forms of the sets X2 we wish to con-
sider rather than just their sizes, as was the case for X1. Indeed, while equa-
tion 2.15 with card(X1) = 3 corresponds to a unique model, equation 2.16
with card(X2) = 3 could be either the model with clusters πx fx , x = (1, 0, 0),
(0, 1, 0), and (0, 0, 1) or one of the

(3
2

) = 3 models with any two of the previ-
ous clusters and their “cross” cluster, for example, x = (1, 0, 0), (0, 1, 0), and
x = (1, 1, 0). While in principle we could also consider models composed
only of “higher-order” clusters, for example, x = (1, 1, 0), (0, 1, 1), and
x = (1, 1, 1), such models imply that the largest WF clusters arise from joint
rather than from single neuron spikes, and thus are unlikely to compare well
with more sensible models. Therefore, in searching for the best model, we
restrict our attention to models with components πx fx such that

∑
i xi ≤ 2.

Because equation 2.16 explicitly models through πx(c;
) the probabil-
ities of several neurons spiking together, joint spikes’ clusters should be
more easily identified. Hence, it seems likely that the chosen model will be
such that X1 ⊂ X2, and that the components in X2 \ X1 will correspond to
clusters of joint spikes. This is illustrated in section 3.3.
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2.6 Implementation Details. As with all EM algorithms, the issues of
choosing initial values, determining the number of neurons, and avoiding
convergence to local likelihood maxima must be addressed. These issues
have been the subject of extensive research in the statistics community. (For
recent reviews, see Sahani, 1999; McLachlan & Peel, 2000; Figueiredo & Jain,
2002.) Although practically important, these issues are not specific to the EM
algorithm developed here, so we kept their implementation to a minimum
to avoid cluttering the main ideas. Basically, we chose reasonable initial
values and determined the number of neurons using a penalized likelihood
approach, as described below. We did not implement any fancy parameter
space search to avoid local likelihood maxima. However, we give evidence
in section 3.6 that including tuning information for spike sorting helps
determine the number of neurons and facilitates the convergence of the
algorithm to the global maximum.

Throughout this letter, we assume without loss of generality that the
waveforms’ first PC distributions fx(a;ψx), x ∈ X , are univariate normal
distributions with means and variances (μx, σ

2
x ). To fit I neurons to an

electrode, we choose initial values μ
(0)
x and σ

(0)
x as follows. For the I com-

binations x ∈ X corresponding to single neurons (
∑

i xi = 1), we simulate
μ

(0)
x at random between the 100(i−1)+10

I th and the 100i−10
I th sample quantiles

of at . For example, when I = 2, we simulate μ
(0)
01 at random between the

5th and 45th quantiles of at and μ
(0)
10 between the 55th and 95th quantiles.

This guarantees that the μ
(0)
x are random but well spread out. We simulate

σ
(0)
x at random between S/(I + 2) and S/I , where S is the sample standard

deviation of at , so that the initial PC distributions do not overlap much. For
x ∈ X that correspond to joint spikes, we let μ

(0)
x be the sample mean of at

and simulate σ
(0)
x at random between 90S and 100S. This is akin to using

very spread uniform distributions and reflects our lack of knowledge about
where joint spike clusters might be. We then simulate the π

(0)
x that corre-

spond to single neurons at random between 30% and 70%, and take the π
(0)
x

that correspond to joint spikes to be the product of the corresponding single
neuron probabilities. Finally we standardize the π

(0)
x so they sum to one. As

for initial values for λi to run the linked EM algorithm, we take them to be
equal to the constants π

(0)
x for the I values of x such that

∑
i xi = 1.

3 Results

Traditional automatic spike sorting is based on describing waveform fea-
tures (WFs) with a mixture of distributions,

f (a;�,�) =
∑
x∈X

πx fx(a;ψx), (3.1)

where πx is the proportion of spikes generated by neuron combination x
and fx is the probability distribution of their WFs, indexed by a parameter
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ψx . This description ignores the fact that the probability of observing a
spike depends on the covariates c that modulate neurons’ firing rates. The
proposed automatic spike sorter rectifies this by letting the distribution of
WFs depend on c,

f (a | c;
,�) =
∑
x∈X

πx(c;
) fx(a;ψx), (3.2)

where fx is as in equation 3.1, but πx(c;
) is now the covariate varying
proportion of spikes generated by neuron combination x when the covari-
ate takes value c. It is a function of the neurons’ tuning functions λi (c; θi ),
as specified by equation 2.4. Equation 3.2 yields a different WF distribution
for different values of c, whereas equation 3.1 describes the WF distribu-
tion when the values of c are “lost” or unavailable. The automatic spike
sorter based on equation 3.2 is necessarily superior to the traditional spike
sorter because it uses more information. Additionally, equation 3.2 explic-
itly models through πx(c;
) the probabilities of several neurons spiking
together as functions of the neurons’ firing rates, which should facilitate the
identification of joint spikes.

But the new spike sorter seems to put the cart before the horse: How
can tuning functions be used before the data are spike-sorted? The an-
swer lies with the linked EM algorithm (see section 2.4) used to estimate
equation 3.2: given the spike times and waveform measurements, the al-
gorithm is designed to provide estimates of the neurons’ tuning functions,
just as the traditional EM algorithm (see section 2.3) is designed to provide
estimates of the waveform distributions fx in equation 3.1. Figures 2, 8,
and 12 illustrate this and also illustrate that the proposed method reduces
spike misclassification rates, helps identify joint spikes, and improves the
convergence of the EM algorithm.

To avoid the inherent uncertainty in determining the true spike iden-
tities in extracellular recordings, we use simulated data, and to produce
easily readable graphics, we use electrodes that record only two neurons.
Although in real neural data, there is typically significant information for
spike sorting in up to three or four of the PCs, we use only one PC to fa-
cilitate the visual comparison between spike sorters. This choice implies no
loss of generality. Indeed, both spike sorters use the same information from
waveforms, so it is fair to compare their performances. In practice more
PCs are used to reduce WF overlap. Section 3.5 illustrates how the spike
misclassification rates vary with cluster overlap. Finally, we assume that
waveforms’ PCs are normally distributed and that neurons spike according
to inhomogeneous Poisson processes.

3.1 Motor Cortex Example. This example is inspired by movement
decoding experiments in primary motor cortex (M1). Say that I = 2 sim-
ulated M1 neurons are recorded by the same electrode while a monkey
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Figure 1: Motor cortex example. (A, B) Simulation model and (C, D) data from
the model. (A) True distributions of spike waveforms first PC, f ∗

x (a ), x ∈ X ,
weighted by the probabilities of their occurrences, π∗

x . (B) Neurons’ true tuning
curves λ∗

i (d) = exp(2.7 + 2 cos(d − di )), i = 1, 2, as functions of directional tun-
ing d , in Cartesian and circular coordinates. The neurons’ preferred directions
are d1 = 0 and d2 = π/2. (C) Color-coded histogram of spikes first PC collected
at the electrode. The shades of gray indicate the true identities of the spikes.
(D) Peristimulus histogram of the recorded electrode spike train, in Cartesian
and circular coordinates. Traditional spike sorting uses the information in C .
The proposed method combines the information in C and D.

traces a 2D constant-speed circular trajectory with his hand. The trajectory
can be described by a scalar parameter d = arctan(y/x) ∈ [0, 2π], which
measures the angle of the hand position (x, y). The true tuning curves
λ∗

i (d) are shown in Figure 1B. By true, we refer to the unknown mecha-
nism that generates the spike trains rather than to the model we chose
to fit to them. To produce easily readable graphics, we used unrealisti-
cally highly modulated tuning curves, with minimum and maximum firing
rates approximately 0 and 110 Hz, respectively. Our other examples are
realistic. We found that the tuning curves and their estimates appeared vi-
sually less cluttered when plotted in a circular coordinates, as displayed in
Figure 1B.
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With I = 2 neurons, card(X ) = 2I − 1 = 3 types of spikes can be recorded
at the electrode, which are the spikes generated by neurons 1 and 2 alone,
and their joint spikes. They are coded by x = (1, 0) ≡ 10, x = (0, 1) ≡ 01,
and x = (1, 1) ≡ 11, respectively. We assume that the signal-to-noise ratio is
large enough so that spikes crossing threshold are real spikes rather than
noise. The noise case is treated in section 3.3. Without loss of generality, we
use the waveforms’ first PCs (PC1) for spike sorting and assume that their
true distributions f ∗

x are normal with means and variances (6, 1), (8, 1), and
(10.5, 3) for x = 10, 01, and 11, respectively. These parameters are arbitrary
but could be made to match actual data by shifting and rescaling the normal
distributions without qualitatively changing the results. Given the tuning
curves specified above, the true probabilities of neurons spiking alone and
together are π∗

10 = π∗
01 = 49.5% and π∗

11 = 1%. Figure 1A displays π∗
x f ∗

x for
x ∈ X . Because π∗

11 is close to zero, π∗
11 f ∗

11 is hard to distinguish from the x-
axis. The waveform clusters π∗

x f ∗
x overlap, so spikes cannot be sorted with

perfect confidence.
Using the model in Figures 1A and 1B, we simulated the electrode spike

train during 50 loops of the circular trajectory, letting the neurons spike
according to Poisson processes with rates λ∗

i (d). A color-coded histogram of
the spikes’ PCs is in Figure 1C. In practice, the spike identities are unknown,
and it is the purpose of spike sorting to determine them. The traditional pro-
cedure consists of clustering the data that make the histogram in Figure 1C.
The proposed spike sorter also uses tuning information, which we repre-
sented by the peristimulus histogram of the spikes in Figure 1D. This plot
shows that spiking happens primarily when directional tuning is approxi-
mately between −π/4 and π/2 + π/4, although, just as with the histogram
of PC1 in Figure 1C, it is hard to distinguish individual neurons with the
naked eye.

Before we proceed with spike sorting, we must select models to fit to
the data. To ensure that the results of this illustrative example are not
corrupted by possible effects of model inadequacies, we use the correct
family of models: fx(a;ψx), x ∈ X , are taken to be normal distributions
with means and variances (μx, σ

2
x ) and the tuning curves to be of the

form λi (d; θi ) = exp(θ0i + θ1i cos(d) + θ2i sin(d)), i = 1, . . . , I . The parame-
ters � = (πx, ψx, x ∈ X ) and 
 = (θi , i = 1, . . . , I ) are estimated using the
EM algorithms in sections 2.3 and 2.4, with initial values generated ac-
cording to section 2.6. The number of neurons recorded by the electrode
was determined by penalized likelihood: both AIC and BIC found I = 2
neurons, the correct number. Plots from left to right in Figure 2A show
π

(k)
x fx(a;ψ

(k)
x ), k = 0, . . . , 5, the initial values and first five iterations of the

EM algorithm of section 2.3, and the last panel shows π̂x fx(a; ψ̂x), the so-
lution after convergence, for x = 01 and x = 10. We omitted estimates of
π11 f11(a;ψ11) because they cannot be distinguished from the horizontal
axis. Figure 2B shows a run of the linked EM algorithm. The same ini-
tial values were used in Figures 2A and 2B. The successive plots show
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Figure 2: (A) Estimation of πx fx(a;ψx), x ∈ X in equation 3.1 by the tradi-
tional EM algorithm of section 2.3. The plots from from left to right show the
initial values π (0)

x fx(a;ψ (0)
x ), the first five iterations π (k)

x fx(a;ψ (k)
x ), and the solu-

tions π̂x fx(a; ψ̂x) after convergence. The thick gray curves are the true π∗
x f ∗

x (a ).
(B) Joint estimation of fx(a; ψx), x ∈ X and λi (c; θi ), i = 1, . . . , I in equation 3.2
by the linked EM algorithms in section 2.4. The same initial values fx(a;ψ (0)

x )
were used in A and B. The initial values λi (c; θ

(0)
i ) in B are constant rates equal

to the starting values π (0)
x used in A. The algorithm in B provides estimates of

tuning functions before the data are spike-sorted.

[
∫

πx(c;
(k))dc] fx(a;ψ
(k)
x ) for x = 01 and x = 10, and λ(d; θ

(k)
i ), i = 1, 2, for

k = 0, . . . , 5, as well as the solution after convergence.3 This shows clearly
that the linked EM algorithm can indeed estimate the tuning curves before
the data are spike-sorted.

With �, �, and 
 estimated, we apply the classification rules in equa-
tions 2.2, 2.7, and 2.8 to sort the electrode spike train. Figure 3 shows the
outcome for one trial of the simulated data. From inward to outward, the
plot shows the neurons’ true tuning curves λ∗

i (d); the observed electrode
spike train for the selected trial, z; the true spike train of neuron 1 we aim
to retrieve by spike sorting, y1; and the spike-sorting classification obtained
by using spike waveform information only (see equation 2.2), tuning infor-
mation only (see equation 2.8), and both sources of information (see equa-
tion 2.7). We see that for waveform-based spike sorting, misclassification
errors are more numerous in the neurons’ preferred directions. This happens
because when d is close to the preferred direction of neuron 2 (1), almost

3Recall that
∫

πx(c; 
(k))dc = πx , the overall proportion of spikes produced by neuron
combination x, so that Figures 2A and 2B can be compared.
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Figure 3: (A) Recorded electrode spike train and (B) true spike train of neuron
1 for one trial of the data of Figure 1. The electrode records I = 2 neurons with
tuning curves plotted in circular coordinates at the center of the plot. The tuning
curve of neuron 1 is the solid curve. (C–E) Estimated spike train of neuron 1
obtained by spike-sorting the electrode spike train using (C) spike waveform
information only, (D) timing information only, and (E) both. The latter has only
one misclassified spike. Overall, spike sorting in C produced 18% misclassified
spikes versus 9% for the proposed method (E).

all spikes recorded at the electrode belong to neuron 2 (1), yet spike sorting
classifies them according to waveform information only. On the other hand,
tuning-based spike sorting assigns spikes to neurons only when their firing
rates are comparatively larger than the firing rates of the other neurons.
Although all spike-sorting rules produce errors, combining all sources of
information clearly does best. The resulting spike misclassification rates for
traditional and proposed approaches are 18% and 9%, respectively, on aver-
age across many repeat simulations. Figure 4 shows the same spike identity
color-coded histogram as Figure 1C, with misclassified spikes indicated in
black.

The proposed spike sorter also helped identify joint spikes: traditional
spike sorting (see equation 2.2) retrieved 37% of the actual joint spikes,
while the proposed method retrieved 45%. Also for both methods, 90% of all
identified joint spikes were actual joint spikes. The noisy channel example
of section 3.3 further illustrates the benefit of modeling the probabilities of
joint spiking as functions of the firing rates.

3.2 Model Selection for Tuning Curves. The previous example was
designed to illustrate the properties of the new spike sorter with easily
interpretable graphics, but that example was unrealistic in several ways.
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Figure 4: Color-coded histograms of the spike waveforms’ first PC. (A) True
identities. (B, C) Identities determined by spike sorting using (B) the traditional
rule, equation 2.2, and (C) the proposed rule, equation 2.7. Spike classification
errors are indicated in black. The spike misclassification rate is 18% in B and
9% in C .

First, M1 neurons are rarely so strongly modulated or exactly cosine tuned,
but worse was to assume parametric models for their tuning curves to run
the linked EM algorithm. Use of parametric models for WFs is justifiable:
normal or t-distributions have long been used successfully, their relative
advantages and shortcomings are well documented, and WFs’ properties
are similar in all experiments. On the other hand, tuning properties are ex-
periment specific and often of primary interest. This example shows how to
build nonparametric tuning curve models to run the linked EM algorithm.

Again we consider I = 2 simulated M1 neurons, recorded by the same
electrode, while a monkey traces a 2D constant-speed circular trajectory.
We use the same WF distributions as in the previous example, but we now
assume that the true tuning curves λ∗

i (d) are double-peaked. They are shown
as thick gray curves in Figures 5 and 6. Given these choices, the probabilities
that neurons spike alone and together are π∗

10 = 32%, π∗
01 = 66%, and π∗

11 =
2%. We simulated the electrode spike train from this model during 50 loops
of the circular trajectory, letting the neurons spike according to Poisson
processes with rates λ∗

i (d).
To run the linked EM algorithm, we use normal WF distributions and

gaussian filters G instead of cosine tuning curves,

λi (c = (d, t); θi ) = exp(θ0i + G(cos(d); bwi ) + G(sin(d); bwi )

+ G(t; bwi0)), (3.3)

where bw are bandwidths that control the amount of smoothing. All equa-
tion 3.3 assumes is that the logarithm of the tuning curves is additive in
smooth functions of the covariates. We let the data determine which covari-
ates to retain in the model and the degree of smoothness of the filters.
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Figure 5: True tuning curves (thick gray curves) and estimates (black curves) ob-
tained by (A) the proposed method and, for comparison, (B) fitting tuning func-
tions to the true neurons’ spike trains (no spike sorting needed). The step-by-step
run of the linked EM algorithm is shown in the appendix in Figure 12. True λ∗

i (d)
are of the form exp(ai1 + bi1 cos(d − di1)) + exp(ai2 + bi2 cos(d − di2)), i = 1, 2,
with di1 �= di2. The same nonparametric tuning curve model was used in A
and B, namely, gaussian filters (see equation 3.3), whose smoothness parame-
ters were determined by cross-validation. B represents the ideal situation since
the true neurons’ spike trains were used. The estimates in A are as close to the
true tuning curves as those in B. This remained true across simulated data (not
shown).

Figure 6: True (thick gray curves) and estimated (black curves) tuning func-
tions obtained by (A) the proposed method and (B) fitting tuning functions to
the true neurons’ spike trains (no spike sorting needed). The same parametric
tuning curve model was used in A and B, namely, an exponential cosine func-
tion λi (d, θi ) = θ0i + θ1i cos(d) + θ2i sin(d). This model is inappropriate and thus
yields biased tuning curve estimates when used within the proposed spike-
sorting method. However, tuning curve estimates would be just as biased even
if the true neurons’ spike trains were available, as shown in B.

In practice, neurons may or may not be tuned to particular covariates,
or different neurons might be tuned to different covariates. Here we con-
sidered the covariates cos(d) and sin(d), which makes sense given the ap-
plication, and also experimental time t, to capture potential temporal drift
effects. To determine which covariates modulate the firing rates, we run the
linked EM algorithm and test the statistical significance of each covariate
using likelihood ratio (LR) tests (Kass et al., 2005) or model selection criteria
like AIC or BIC. That is, we test which components of 
 are significantly
different from zero. An LR test thus determined that experimental time
did not significantly modulate neurons’ spiking (p-value � 0.001), so we
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removed t from the model. Although this conclusion is obvious here since
we know how the data were generated, the process illustrates how to select
appropriate covariates in real applications.

The degrees of smoothness of the gaussian filters were determined from
data by cross-validation, a model choice criterion asymptotically equiva-
lent to AIC. Within the family of nonparametric models specified by equa-
tion 3.3, the optimal model for neuron 1 (solid curve in Figure 5) uses 12
DFs—1 for the intercept and 5.5 for each of cos(d) and sin(d). The optimal
model for neuron 2 (dashed curve in Figure 5) uses 1 DF for the intercept and
4.75 for each of cos(d) and sin(d). The DFs for cos(d) and sin(d) are much
larger than one, which strongly suggests that the neurons are not cosine
tuned.4 An LR test comparing cosine and optimal models further confirmed
this, as did the K-S goodness-of-fit test of Brown, Barbieri, Ventura, Kass,
and Frank (2002) (not shown). In contrast, equation 3.3 fitted to the cosine
neurons of section 3.1 yielded DFs close to one, while LR and K-S tests did
not reject cosine tuning curves as viable models for those neurons. This
shows that common likelihood-based model selection techniques can be
applied within the proposed approach to build appropriate tuning curve
models.

Note that adding tuning information reduced the spike misclassification
rate for neuron 1 from 30.5% to 16.8% and increased that for neuron 2 from
8.4% to 9% on average across simulated samples. Accounting for the two
neurons producing 32% and 66% of the spikes, respectively, the overall
spike misclassification rate was reduced from 15.5% to 11.5%

Finally, to illustrate the danger of using an inappropriate tuning model,
we also fitted exponential cosine curves to the data of Figure 5. The misclas-
sification rate for neuron 1 was reduced from 30.5% to 14%, that for neuron
2 increased from 8.4% to 13.6%, and the overall rate was still reduced from
15.5% to 13.8%. However, the improved rate does not mitigate the severity
of the bias in the tuning curve estimates (see Figure 6A). To be fair to our
method, we also fitted exponential cosine tuning curves to the true neurons’
spike trains. The resulting estimates in Figure 6B are also grossly biased.
This shows that assuming an inappropriate tuning curve model has similar
consequences regardless of the estimation method.

3.3 Noisy Channel Example. In classic single-electrode electrophysiol-
ogy, waveforms are often well isolated by hand-positioning electrodes. In

4The family of models defined by equation 3.3 includes cosine tuning as a special case,
when the bandwidths correspond to one nonparametric degree of freedom (DF) for each
of cos(d) and sin(d). The DFs of a nonparametric model are defined as the trace of the
projection matrix for the regression, to mirror the parametric case, for which that trace
equals the number of covariates included in the model. Hence, a nonparametric model
that uses p DFs can be thought of as a polynomial of degree p in a covariate or as a model
with p different covariates.
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that case, classic and proposed spike sorting are equivalent. However, the
traditional practice of optimizing the signal-to-noise ratio by manipulating
the electrode placement is no longer always possible or practical, for ex-
ample, when electrodes or arrays are chronically implanted. In that case,
many voltage measurements exceeding the threshold will be noise or arti-
facts, and a significant proportion of spikes will be corrupted by noise. Our
method can handle such situations. All we have to do is assume that one
of the I neurons recorded by the electrode is a “noise neuron” whose firing
rate is constant, and to which we assign the noise spikes. Additionally, as
argued in section 2.5, equation 3.2 explicitly models through π∗

x (c) the prob-
abilities of several neurons’ spiking together as functions of the neurons’
firing rates, which will facilitate the identification of noise-corrupted spikes.

Consider the simulated example inspired by Olson, Gettner, Ventura,
Carta, and Kass (2000). The experiment that produced the data analyzed
there examined the temporal evolution of neuron firing in a part of the
brain affected by attention, the supplementary eye field (SEF). A simplified
version of the experiment is as follows:

1. A central target appears on a screen at time t = 0. A monkey must
maintain fixation on the target.

2. A cue appears at a peripheral target and gets turned off.
3. At t = 200, the central target is turned off, which is the signal to move

the eyes to the peripheral target.

One objective of the study was to draw inferences about the temporal
evolution of neurons’ firing rates. In that case, the covariate that modulates
the firing rates is ct = t, the experimental time. Figure 7B shows the firing
rate of a neuron typical of those we estimated for these data. We use this
rate as the true firing rate λ∗

1(t) of a neuron in the simulation below. Suppose
that the noise on that electrode is normally distributed with mean 0 and
variance 2. We set the threshold at 1, so that a spike is recorded each time
the electrode voltage exceeds 1. A noise signal with the stated character-
istics, sampled every millisecond and thresholded at 1, corresponds to a
constant noise spiking rate of λ∗

2(t) = 308 Hertz.5 Once again, we reduce
recorded waveforms to their first PCs and take their true distributions f ∗

01
to be normal with mean 8 and standard deviation 1. We also assume that the
first PCs of noise measurements are normally distributed, with mean 0 and
standard deviation 5. Given the firing rate of the neuron in Figure 7B and
the noise specification, the probability that the voltage-crossing threshold
corresponds to noise is π∗

10 = 87.1%. The remaining crossings correspond
to actual spikes in proportion π∗

01 = 8.9%, or to spikes corrupted by noise
in proportion π∗

11 = 4%. That is, about 30% of the neuron’s spikes are cor-
rupted by noise. The PCs of the noise-corrupted spikes are unlikely to have

5The probability of a spike in a 1 msec bin is Pr(Z > 1) = 0.308 where Z is Normal(0,1).
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Figure 7: Noisy channel example. (B) An electrode records one neuron, whose
true firing rate λ∗

1(ct) varies with ct = t, the experimental time. The electrode’s
voltage is very noisy and crosses threshold at the rate of 308 Hertz. Out of all
“spikes” recorded at the electrode, π∗

10 = 87.1% of them are noise, π∗
01 = 8.9%

are real spikes, and π∗
11 = 4% are noise-corrupted spikes. For spike sorting,

we reduce waveform and noise measurements to their first PCs. Their true
distributions f ∗

x (a ), x ∈ X are shown in A, weighted by the probabilities of their
occurrences, π∗

x . The noise cluster overlaps the spike clusters almost entirely, so
misclassification errors will be numerous.

distribution f ∗
01, so we assumed that f ∗

11 was normal with mean 4 and stan-
dard deviation 2. Figure 7A displays π∗

x f ∗
x for x ∈ X .

Using the model in Figure 1, we simulated the noisy electrode spike train
for 20 repeats of the experiment, letting the neuron and the noise spike ac-
cording to Poisson processes with rates λ∗

i (d), i = 1, 2. For spike sorting, we
assumed normal distributions for the PCs, we assumed that the noise was
produced by a “noise neuron” with unknown constant spiking rate, and,
with no obvious choice of firing rate model, we used regression splines in t
with six knots placed at equally spaced quantiles of the data, as in Ventura,
Carta, Kass, Gettner, and Olson (2002). Another reasonable nonparametric
model that could be fitted to these data is a PSTH, as is done in Ventura
(2009).

Figure 8 shows step-by-step runs of the traditional and linked EM al-
gorithms to estimate equation 2.2 and equation 2.7, respectively. The same
initial values were used in Figures 8A and 8B. Once again, Figure 8B shows
clearly that the linked EM algorithm can estimate firing rates before the
data are spike-sorted. Figure 8 also illustrates the benefit of modeling the
probability of joint spikes π11(c;
) as a function of the firing rates, as per
equation 2.4. Indeed, given the same initial values, the traditional EM algo-
rithm fails to detect the cluster of noise-corrupted spikes, while the linked
EM algorithm identifies the three clusters well. For traditional spike sorting,
the estimate of the proportion π∗

11 of noise-corrupted spikes is less than 10%
of its true value. In contrast, the proposed procedure has π11(c; 
̂) .= π∗

11(c)
for all c, and

∫
π11(c; 
̂) dc .= ∫

π∗
11(c) dc, so it accounted for noise-corrupted
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Figure 8: (A) Estimation of πx fx(a;ψx), x ∈ X in equation 3.1 by the traditional
EM algorithm of section 2.3. The plots from left to right show the initial values
π (0)

x fx(a;ψ (0)
x ); the first, 20th, and 40th iterations π (k)

x fx(a;ψ (k)
x ); and the solu-

tion π̂x fx(a; ψ̂x) after convergence. The thick gray curves are the true π∗
x f ∗

x (a ).
(B) Joint estimation of fx(a;ψx), x ∈ X and λi (c; θi ), i = 1, . . . , I in equation 3.2
by the linked EM algorithms in section 2.4 The same initial values fx(a; ψ (0)

x )
were used in A and B. The initial values λi (c; θ

(0)
i ) in B are constant rates equal

to the starting values π (0)
x used in A. The algorithm in B provides estimates of

tuning functions before the data are spike-sorted. In addition, it yields estimates
fx(a; ψ̂x) that are closer to the true distributions f ∗

x (a ) than does the algorithm
in A.

spikes in the correct proportion. This facilitated the estimation of f11(t;ψ11)
and, in turn, the estimation of the other WF distributions. We discuss con-
vergence properties of the EM algorithms further in section 3.6.

With �, �, and 
 estimated, we apply traditional and proposed spike
sorters to the electrode spike train. The noise cluster overlaps almost com-
pletely the spike WF clusters, which results in a very high spike misclassifi-
cation rate of 51%. The proposed approach reduces that rate by only 1.5%.
Note, however, that a modest reduction in misclassification rates can have
substantial effects on tuning curve estimates, which in turn might have an
impact on scientific conclusions, as we illustrate in the next section and
return to in section 4.

3.4 Designed Experiment Example. Consider a common type of exper-
iment, whose aim is to compare the firing rates of neurons under two or
more experimental conditions. For example, Olson et al. (2000) compared
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Figure 9: Designed experiment. (A) True firing rates λ∗
i (c) of I = 2 neurons

recorded by the same electrode, under two different experimental conditions
c = 1 and c = 2. (C) Estimated firing rates λi (c; θ̂i ) obtained by the linked EM
algorithm, with 95% confidence intervals. True and estimated rates are equal
within error. (B) Estimated rates calculated from data spike-sorted with the
traditional waveform-based approach, with 95% confidence intervals. True and
estimated rates do not match within error.

the responses of supplementary eye field (SEF) neurons to eye saccades
made in response to endogenous and exogenous cues. Once again we con-
sider an electrode that records I = 2 simulated neurons, whose waveform
first PCs are as in Figure 1A. We consider two experimental conditions c = 1
and c = 2 and assume that the neurons’ true firing rates are constant within
each experimental condition; neuron 1 spikes at λ∗

1(c) = 50 Hz regardless
of the condition, while neuron 2 does not spike when c = 1 and spikes at
100 Hz when c = 2. Neuron 1 is not tuned to c, which we should be able to
verify from data.

We simulated the electrode spike train for 10 seconds in each condition
and ran traditional and proposed spike sorters, assuming normal models for
the spikes’ first PC distributions, and a within-condition constant rate model
for λi (c; θi ). Although firing rates are constant within conditions, tuning
information is still available for spike sorting because the rates are not all
constant between conditions. Indeed, using tuning information reduced the
spike misclassification rate from 18% to 11%.

Figure 9 shows true and estimated firing rates, obtained by regression
from spike-sorted data in the traditional approach, and as the output of
the linked EM algorithm in the proposed approach. The latter estimates are
equal to the true rates within error. We also performed LR tests6 to compare
firing rates across conditions and found that neuron 2 had significantly
different rates (p-value � 0.0001), whereas neuron 1 did not (p-value =
0.84%). This is consistent with the truth. This example illustrates once more
that the new spike sorter not only can estimate the neurons tuning functions
but also can identify the covariates that modulate these functions.

6In this particular application, the LR tests are equivalent to the well-known two
sample t-tests.
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What is troubling is that the traditional procedure yields firing rate es-
timates that are not equal to the true rates within error (see Figure 9B).
Additionally, t-tests determined that both neurons had significantly dif-
ferent rates in the two conditions (p-values P � 0.0001). This example is
discussed further in section 4.

3.5 Spike Misclassification Rates Depend on the Amount of Waveform
and Tuning Information. The proposed spike sorter yields a lower spike
misclassification rate because it uses more information. In practice, the
reduction in rate will be more or less substantial depending on how much
information tuning carries about spikes’ identities. The only situation the
proposed method cannot improve in theory is when neurons are not tuned.
Then π∗

x (c) = π∗
x , and new and traditional spike sorters are equivalent. If all

neurons have the same tuning curves, tuning does not provide information
to identify single-neuron spikes, but joint spikes should still be more easily
identified.

We revisit the motor cortex example of section 3.1. The WF distribu-
tions of the two neurons overlapped by 19%, so spikes’ classification errors
were unavoidable. Their tuning curves overlapped by 21% and thus carried
substantial information about spike identities, which reduced the spike mis-
classification rate from 18% to 9%. We now repeat the same spike-sorting
exercise, letting the overlaps of the tuning curves and the WF clusters vary.
The precise definition of overlap is given in the appendix. Although overlap
percentage is only a crude measure of curve similarity, the idea is that the
more two curves overlap, the less information they provide to identify neu-
rons. An overlap of 0% means that two curves (i.e., two WF distributions or
two tuning curves) share no overlap. An overlap of 100% means that two
curves are identical so they provide no information to separate neurons.

Figure 10C plots the spike misclassification rates for traditional and pro-
posed spike sorters as functions of the overlap percentage between the WF
distributions f ∗

01 and f ∗
10. The solid bold curve corresponds to traditional

spike sorting and the lettered curves to the proposed approach for the five
tuning curve overlaps shown in Figure 10B. (Note that circular coordinates
do not visually represent overlap percentages well.) The misclassification
rates reported for Figure 4 can be read from the bold and c-curves in Fig-
ure 10C, at value 19% on the x-axis. The values of the lettered curves when
the WF clusters overlap is 100% give the spike misclassification rate when
only tuning information is used for spike sorting (see equation 2.8). If the
tuning curves share no overlap (curve e), spikes can be classified perfectly
whatever the information in waveforms. It is clear from Figure 10C that in-
corporating tuning information always helps classify spikes—if, that is, the
tuning curve model is not too badly misspecified (see section 3.2). Given
that traditional and proposed approaches share the same set of assump-
tions, this help comes at the very modest computational cost of running the
linked EM algorithm in place of the traditional EM algorithm.
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Figure 10: (C) Spike misclassification rates of traditional and proposed spike
sorters as functions of waveform clusters overlap for the different tuning func-
tions overlaps shown in B. (A) Sample of WF clusters overlap. The spike mis-
classification rate increases the more WF clusters and tuning functions overlap.
However, as expected from theory, including tuning information reduces the
spike misclassification rate. The right end value on each curve in C is the mis-
classification rate obtained by spike sorting based on tuning information only
(see equation 2.8).
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Note that the misclassification rates in Figure 10C did not account for the
classification of the joint spikes, because it was not easy to find a meaningful
definition of the overlap between the three distributions f ∗

x we could use for
the x-axis. However the proposed spike sorter helped retrieve about 20%
more joint spikes than the traditional sorter for all configurations of tuning
curves shown in Figure 10B. This remains true when the two neurons have
equal tuning curves (not shown).

We also assumed that the electrode recorded I = 2 neurons rather than
estimate this number by penalized likelihood. In practice, I needs to be de-
termined from the data, with outcome matching the truth or not depending
on the amount of waveform and tuning information. This is discussed in
the next section.

3.6 Combining Waveform and Tuning Information Helps the EM
Algorithm to Converge. With all EM algorithms, the issues of choosing
initial values, determining the number of neurons, and avoiding conver-
gence to local likelihood maxima must be addressed. Although practically
important, these issues are not specific to the EM algorithms used here,
so we kept their development to a minimum to avoid cluttering the main
ideas. However, we next provide evidence that including tuning informa-
tion for spike sorting helps determine the number of neurons and facilitates
the convergence of the algorithm to the global maximum likelihood.

Consider again the simulation in Figure 10, for which we had assumed
I = 2. We now determine I by penalized likelihood. Consider first the tra-
ditional approach, which uses WF information only (solid bold curve in
Figure 10). When the WF distributions f ∗

01 and f ∗
10 do not overlap, penal-

ized likelihood consistently finds I = 2 neurons in every data set simulated
from the model. When f ∗

01 and f ∗
10 overlap completely, that number drops

to I = 1 in every simulated data set. And as expected, the chance of finding
two neurons decreases as the overlap increases. Adding tuning information
makes it more likely to determine the correct number of neurons. For exam-
ple, if neurons have tuning curves as in Figure 10Bcde, penalized likelihood
correctly finds I = 2 neurons in every simulated data set, regardless of the
amount of WF information. This includes the case where WF distributions
overlap completely. Tuning curves such as those in Figure 10Bab also in-
crease the chance of finding the correct number of neurons, although the
chance of finding only one neuron is still substantial when WF distributions
overlap substantially.

Next, Figure 11 illustrates that combining waveform and tuning infor-
mation helps the EM algorithm converge to the global maximum likelihood.
Figure 11A shows π∗

x f ∗
x (a ) and their estimates obtained by the traditional

EM algorithm applied to a data set simulated from the model in Figure 1.
True and estimated curves do not match perfectly, which is due partly to
data variability (estimates match the truth only up to random error), but
could also be due to the EM algorithm converging to a local maximum.
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Figure 11: Convergence of EM algorithms. Motor cortex example. (A) Tradi-
tional EM algorithm to estimate waveform clusters (see section 2.3). The top
plot shows true π∗

x f ∗
x (a ), x ∈ X in equation 2.1 and their estimates for one sim-

ulated data set. The bottom plot shows the bands in which 95% of estimates
from 100 simulated data sets fall. (C) Proposed linked EM algorithm to esti-
mate jointly waveform clusters and tuning curves (see section 2.4). The top plot
shows, side by side, true π∗

x f ∗
x (a ), x ∈ X and λ∗

i (d), i = 1, . . . , I in equation 2.6,
and their estimates for one simulated data set. The bottom plot shows 95%
simulation bands. (B) Linked EM algorithm used to estimate tuning curves,
ignoring waveform information (see section 2.4.2). The top plot shows true
λ∗

i (d), i = 1, . . . , I , and their estimates, for one simulated data set. The bottom
plot shows 95% simulation bands. This plot illustrates that combining wave-
form and tuning informations not only helps spike-sort the data, but also helps
the EM algorithms converge to the likelihood global maximum.

Figure 11C shows the outcome of the linked EM algorithm applied to the
same data set and initialized with the same values. True and estimated WF
distributions now match more closely, which confirms that the algorithm
in Figure 11A did converge to a local maximum. For completeness, we also
applied the second part of the linked EM algorithm to the same data set,
with the aim of spike-sorting the data based on tuning information only. The
resulting tuning curve estimates are in Figure 11B. The large discrepancy
between true and estimated curves in comparison to Figure 11C suggests
that the algorithm converged to a local rather to the global maximum.
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The lower panels of Figure 11 show the true curves and simulation
bands in which 95% of estimates from 100 simulated data sets fall. The
bands in Figure 11C remain unchanged if we let the WF distributions f ∗

01
and f ∗

10 spread apart so they no longer overlap (not shown), which suggests
that the variability we see in Figure 11C is due to the randomness of the
data rather than to convergence difficulties of the linked EM algorithm.
By comparison, the fatter bands in Figures 11A and 11B must therefore be
partly due to convergence problems.

Figure 11 suggests that the effect of adding tuning information to the
waveform information, or vice versa, facilitates the joint estimation of WF
distributions and tuning functions, by which we mean that � and 
 are
more likely to be estimated by their maximum likelihood estimates rather
than by some values at a local maximum of the likelihood. Note that im-
proved estimation is a benefit that is separate from the spike-sorting prob-
lem. To clarify, combining both sources of information yields a spike sorter
that is superior to the traditional sorter. Because spike-sorting rules depend
on unknown parameters, they must be estimated from data. The estimates
of WF distributions and tuning curves happen to be superior when they are
obtained jointly by the linked EM algorithm rather than separately.

4 Discussion

Current spike-sorting methods focus on clustering neurons’ characteristic
spike waveforms. The resulting spike-sorted data are then typically used
to estimate how covariates modulate the firing rates of neurons. However,
when covariates do modulate the firing rates, they too provide information
about spikes’ identities, which thus far has been ignored for the purpose
of spike sorting. We proposed a new automatic spike sorter that combines
spike waveform and tuning information. In theory, it yields the lowest
spike misclassification rates since it efficiently uses more information than
current spike sorters do. It also facilitates the identification of joint spikes
and noise-corrupted spikes, because it models explicitly the probabilities
of several neurons spiking together as functions of their firing rates. But as
with all other statistical methods, its performance in practice will depend
on the quality of the assumed models for waveform features and tuning
functions.

The proposed spike sorter essentially consists of performing spike-
sorting and tuning function estimation simultaneously rather than sequen-
tially, as is currently done. No more assumptions are needed, although the
tuning model must now be specified before the data are spike-sorted. While
parametric models such as normal or t-distributions are often assumed for
waveform features, tuning functions should be modeled nonparametrically
unless specific knowledge suggests otherwise. Indeed, waveform features
are qualitatively invariant to the experiments that produce them, and mod-
els for their distributions have long been evaluated. In contrast, neurons’
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tuning properties are not only experiment specific, they are typically of
primary interest. We showed that nonparametric firing rate models such as
gaussian filters and splines could be used within our framework and that
likelihood-based model selection techniques could be applied. For exam-
ple, we tested that gaussian filters provided significantly better fits than
cosine functions to the tuning curves of simulated motor cortex neurons
and determined the smoothness of these filters by cross-validation. We also
showed that standard statistical tests of hypotheses could determine which
covariates modulate neurons spiking.

So what could go wrong? We illustrated that assuming an inadequate
tuning model could severely bias tuning curve estimates, and hence bias
spike classifications. But to be fair to the proposed approach, tuning curve
estimates were just as biased when the same model was fitted to the true
neurons’ spike trains. This shows that model selection for tuning func-
tions is equally important whatever the estimation procedure may be. An
inadequate model for waveform features could also bias tuning curve es-
timates, since both waveform and tuning models are estimated simultane-
ously. But tuning curves fitted to data first spike-sorted based on wave-
forms would also be biased, since a bad waveform model would bias spike
classifications.

Unexpectedly, it is the traditional procedure that produced a puzzling
result. In the example in section 3.4, the neurons’ firing rates estimated
by the proposed spike sorter matched the true rates within error, whereas
the rates estimated from data first spike-sorted based on waveforms did
not. Note that this effect was not seen in Figures 5 and 6, because the
rates estimated by the proposed spike sorter were compared to estimates
obtained from the true neurons’ spike trains. The result of section 3.4 is
not a fluke but a general flaw of the traditional sequence of first spike
sorting based on waveforms, then estimating tuning functions. Ventura
(2009) shows that tuning functions estimated by the traditional approach
are systematically biased and inconsistent, whereas the proposed spike
sorter yields consistent estimates.

Our last comments concern the assumptions we made and possible al-
gorithmic improvements. We estimated the proposed spike sorter via an
EM maximum likelihood algorithm. We presented the general form of this
algorithm and provided a detailed implementable version under the as-
sumption that neurons are independent and spike according to Poisson
processes. We assumed that spike waveform features were normally dis-
tributed, but distributions deemed more appropriate could readily be used
instead, for example, t-distributions, as suggested by Harris et al. (2000)
and Shoham et al. (2003), provided an EM algorithm existed or could be
developed to estimate their parameters. Some spike-sorting methods also
include, with varying degrees of formality, additional information such as
refractory periods and nonstationarity of waveforms, for example spike
amplitude decays after short interspike intervals (Fee et al., 1996; Pouzat,
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Delescluse, Voit, & Diebolt, 2004). We plan to incorporate these effects in our
framework by letting the neurons’ firing rates depend on the past. We kept
to a minimum the issues of determining the number of neurons, choosing
initial values, and avoiding convergence to local likelihood maxima. How-
ever, we provided evidence that including tuning information alleviated
these issues. More sophisticated parameter space searches could also be
implemented, for example, reversible Markov chain Monte Carlo methods
(Richardson & Green, 1997), or the method of Figueiredo and Jain (2002).

Appendix

A.1 Step-by-Step Run of the Linked Algorithm for Figure 5. See
Figure 12.

Figure 12: Joint estimation of πx fx(a; ψx), x ∈ X , and λi (c; θi ), i = 1, . . . , I , by
the linked EM algorithm in section 2.4. The plots from from left to right show
the initial values, the first five iterations, and the solutions after convergence.
The thick gray curves are the true π∗

x f ∗
x (a ) and λ∗

i (c).

A.2 Percentage Overlap Between Two Curves. The percentage over-
lap between two curves, for example, two tuning curves or two WF
distributions (see Figure 13) is the intersection area under the curves (dark
gray) divided by the total area under the two curves (light gray plus dark
gray). A value of 1 indicates complete overlap and a value 0 perfect sepa-
ration.

Figure 13.
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