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Spike-based brain-computer interfaces (BCIs) have the potential to re-
store motor ability to people with paralysis and amputation, and have
shown impressive performance in the lab. To transition BCI devices from
the lab to the clinic, decoding must proceed automatically and in real
time, which prohibits the use of algorithms that are computationally in-
tensive or require manual tweaking. A common choice is to avoid spike
sorting and treat the signal on each electrode as if it came from a single
neuron, which is fast, easy, and therefore desirable for clinical use. But
this approach ignores the kinematic information provided by individual
neurons recorded on the same electrode. The contribution of this letter is
a linear decoding model that extracts kinematic information from indi-
vidual neurons without spike-sorting the electrode signals. The method
relies on modeling sample averages of waveform features as functions
of kinematics, which is automatic and requires minimal data storage and
computation. In offline reconstruction of arm trajectories of a nonhuman
primate performing reaching tasks, the proposed method performs as
well as decoders based on expertly manually and automatically sorted
spikes.

1 Introduction

Motor brain-computer interfaces (BCIs) map neural activity to the move-
ment of a neuroprosthetic device (Schwartz, 2007) and have the potential
to restore motor ability to people with paralysis and amputation. In this
letter, we focus on decoding motor intention from the activity of neurons
recorded with a microelectrode array.

Decoding consists of predicting kinematic variables from spike trains.
The spike trains of individual neurons are not usually observed be-
cause the electrodes on an array record the combined signals of multiple
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neurons, but they can be estimated by sorting the spike waveforms (Lewicki,
1998). Another popular choice now is to avoid spike sorting and treat each
electrode as a single putative neuron, which is fast, easy, and therefore de-
sirable for clinical use (Fraser, Chase, Whitford, & Schwartz, 2009). But this
approach ignores the kinematic information provided by individual neu-
rons recorded on the same electrode. Ventura (2009b) proposed decoding
kinematics from a joint model for the electrodes’ spike trains and the spike
waveforms, which also avoids spike sorting but does not sacrifice kinematic
information. Based on a nonparametric and a parametric implementation
of that decoder, respectively, Kloosterman, Layton, Chen, and Wilson (2014)
and Todorova, Sadtler, Batista, Chase, and Ventura (2014) report better ac-
curacies to decode 1D location of rats from hippocampal place cells and 3D
arm velocity from rhesus monkey M1 and PvM data, compared to decoding
from unsorted electrodes and from units carefully sorted by human experts.

In this letter, we first argue that decoding from the true neurons’ spike
trains is the statistically most efficient approach and that decoding from
the joint model for the electrodes’ spike trains and the spike waveforms
is the next best option. But accurate spike sorting to retrieve the neurons’
spike trains requires computationally intensive algorithms, large amounts
of data, and expert tuning (Harris, Henze, Csicsvari, Hirase, & Buzsáki,
2000; Gibson, Judy, & Markovi, 2012), and predictions from the joint model
are not obtained in closed form but require computationally expensive
numerical or stochastic approximations (Todorova et al., 2014). To transition
BCI devices from the lab to the clinic, decoding must proceed automatically
and in real time, which prohibits the use of the two most statistically efficient
methods.

We then propose a computationally efficient implementation of the de-
coder based on the joint model for the electrodes’ spike trains and the
spike waveforms, which is automatic and yields closed-form kinematic
predictions. We evaluate its performance on offline reconstruction of arm
trajectories for a nonhuman primate performing reaching tasks and show
that it is as efficient as decoding from spikes sorted using the state-of-the-art
focused mixture model of Carlson et al. (2014).

2 Methods

Consider a neuron i whose firing rate λi(xt ) spikes per msec, say, is modu-
lated by kinematic variables xt . The spike-generating process for this neuron
is

Yit | xt ∼ Bernoulli(λi(xt )), (2.1)

Wt | Yit = 1 ∼ fi(w), (2.2)
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where Yit = 1 if the neuron spikes at time t and Yit = 0 otherwise, and Wt is
a vector of its waveform measurements, with distribution fi. An electrode
records the activity of several neurons and noise. Its voltage is thresholded,
and the voltage threshold crossings are recorded together with their wave-
forms. The electrode spike-generating process is

Zt | xt ∼ Bernoulli(τ (xt )), (2.3)

Wt | Zt = 1, xt ∼
K∑

j=1

π j(xt ) f j(w), (2.4)

Wt | Zt = 0, xt ∼ w0, (2.5)

where Zt = 1 denotes a threshold crossing at t and equation 2.4 is the
distribution of the corresponding waveforms; equation 2.4 specifies that the
probability that the spike was produced by unit j is π j(xt ), with waveform
features distribution fj. The K units recorded by the electrode include a
noise unit, which gathers the waveforms not attributable to any neurons.
We ignore coincident spikes to simplify the exposition and the notation,
in which case the threshold crossing rate in equation 2.3 is the sum of
the firing rates of the K units: τ (xt ) = ∑

j λ j(xt ), and π j(xt ) = λ j(xt )/τ (xt ).
Ventura (2009a) provides the exact formula for τ (xt ). Equation 2.5 is the
distribution of the electrode voltage below the threshold (Zt = 0), which is
not typically recorded. Without loss of generality, we let it be a degenerate
distribution with all its mass at w0 = 0.

The neuron and electrode models above assume that (i) neurons are Pois-
son and mutually independent, so their spiking rates depend only on the
kinematics xt , and (ii) waveforms are stationary, so their distributions do not
depend on covariates such as time t and spike trains statistics (e.g. spiking
rate and interspike intervals). Distributional assumptions are addressed in
Sections 2.2 and 2.3.

2.1 Statistically Efficient Decoding. The diagram in Figure 1 repre-
sents the processing pipeline for the data. The true neurons’ spike trains
Y provide the most information about the kinematics x, since Y and x are
most closely connected in the graph. But Y is unobserved and thus can-
not be used for decoding. Two alternative decoding routes are commonly
implemented: one uses the waveform measurements W to sort the signal
into individual units’ spike trains, Ŷ, the other ignores the waveforms alto-
gether and treats the electrode threshold crossings Z as the spike trains of
single putative neurons. A model describing the dependence between the
available spike trains (Ŷ or Z) and the kinematics is then used to decode
x (see section 2.2). The latter route is popular in the lab because it is fast
and easy to implement and performs well in practice (Fraser et al., 2009),
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Figure 1: Observed data, (Z, W), unobserved neurons spike trains, Y, and spike
trains of sorted units, Ŷ. The data processing inequality states that I(x; Ŷ) ≤
I(x; Z, W): spike sorting the observed data (Z, W) decreases the information
about x.

but it is statistically inefficient because it ignores the information about x in
equation 2.4. The former route is not fully efficient either: applying the data
processing inequality (Kullback, 1997) to Figure 1 suggests that Ŷ provide
less information about x than the unprocessed data (Z, W), unless Ŷ = Y,
that is, unless spike sorting retrieves the true neuron spike trains. Process-
ing (Z, W) to obtain Ŷ discards information about x because the waveforms
alone are used to sort spikes, which ignores that the kinematics x also con-
tain information about spike identities when they modulate the neurons’
firing rates (Ventura, 2009b; Ventura & Gerkin, 2012). Todorova et al. (2014)
observe that decoding jointly from (Z, W) is particularly superior to decod-
ing from sorted spike trains Ŷ when sorting is poor, for example when spike
waveform clusters overlap and when neurons on an electrode have very
different tuning curves so that the π j(x) in equation 2.4 are highly modu-
lated. Decoding from Ŷ or from (Z, W) is equivalent when π j(x) = π j for
all j and when the waveform model in equation 2.4 clusters spikes perfectly
(see appendix A).

To summarize, decoding from the true neurons’ spikes trains Y is most
efficient, and decoding from the observed data (Z, W) is the next best option.
However, both options are problematic for real-time decoding: the most
advanced spike sorters are computationally demanding and often require
manual tuning, yet they are unlikely to retrieve exactly the true neurons’
spike trains, and decoding from the joint models for (Z, W) of Todorova
et al. (2014) and Kloosterman et al. (2014) is computationally very intensive.
In section 2.3, we propose a reformulation of the joint model from which
decoding kinematics is computationally trivial. But first, we review the
most common linear methods to decode from spike trains.

2.2 Computationally Efficient Decoding from Spike Trains. Let st =
(s1

t , s2
t , . . . , sN

t )T denote the vector of spike counts in time bin of size δ cen-
tered at t for N putative neurons, which can be either spike-sorted units
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or electrodes treated as single neurons. Closed-form predictions are de-
sirable for real-time implementations of BCIs and are obtained by using
gaussian linear models for the kinematics’ and neurons’ spike counts. One
such model is the forward filter, or reverse regression (RR), which predicts
the kinematics xt as linear functions of spike counts (Warland, Reinagel, &
Meister, 1997):

xkt = δk0 + dT
k st−τ + ζkt, k = 1, 2, . . . , (2.6)

where xkt is the kth component of xt , st−τ is the vector of spike counts
lagged by τ compared to the kinematics, δk0 and dk are a scalar and a vector
of regression coefficients, and ζkt is gaussian noise. Alternatively, optimal
linear estimation (OLE; Salinas & Abbott, 1994) consists of modeling the
lagged spike counts as gaussian variables with firing rates linear in the
kinematics:

st−τ = β0 + B xt + ηt, (2.7)

where β0 and B are a scalar and a matrix of regression coefficients and ηt is a
vector of gaussian noise, and predicting the kinematics with the maximum
likelihood of xt in equation 2.7. Dynamic Bayesian decoding supplements
equation 2.7 with a state equation that models the smoothness of kinematic
trajectories; here we use an autoregressive process of order one:

xt = A xt−1 + εt, (2.8)

where A is a matrix of coefficients and εt are gaussian perturbations. Equa-
tions 2.7 and 2.8 constitute a state-space model from which predictions for
xt are obtained in closed form using Kalman recursive equations (Brown,
Frank, Tang, Quirk, & Wilson, 1998).

2.3 Computationally Efficient Decoding from Spike Waveforms. De-
coding from the observed data (Z, W) involves a likelihood function in
two parts: the likelihood of the electrodes’ spike trains in equation 2.3 can
be approximated by a gaussian linear likelihood for their spike counts (see
equation 2.6 or 2.7), but the likelihood of the waveform features W based on
their distribution in equation 2.4 is neither linear nor gaussian, so kinematic
predictions cannot be obtained in closed form; fitting mixture distributions
like equation 2.4 and estimating K can also be difficult (Lewicki, 1998). In
this section, we show how to approximate the likelihood of W by a set of
linear equations, which are easy to fit and decode from.
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We start with calculating the moments of the waveform features in the
binned electrodes’ spike trains:

E(Wp | x)=
∑

z=0,1

P(Z = z | x) E(Wp | Z = z, x)

= [1 − τ (x)] wp
0 + τ (x)

⎡
⎣

K∑
j=1

π j(x) μ
p
j

⎤
⎦

= wp
0 +

K∑
j=1

λ j(x)(μ
p
j − wp

0 ),

where w0 is defined in equation 2.5, and μ
p
j = ∫

wp f j(w) dw is the pth
moment of fj in equation 2.4, that is, the pth moment of the waveform
features of the jth neuron recorded by the electrode, p ∈ N. The moments
E(Wp | x) contain information about x since they depend on x. Moreover,
they are linear functions of x when the neurons’ tuning curves λ j(x) are
linear in x, a common assumption. We cannot calculate them because they
are functions of K, λ j(x), and μ

p
j , which are unknown since we did not

spike-sort the electrode signals, but we can estimate them by regressing the
corresponding sample moments on the kinematics:

wp
t−τ = γ

p
0 + Gp xt + δ

p
t , (2.9)

where wp
t is the vector of the sample average of the exponentiated wave-

form features in time bin t,1 γ
p

0 and Gp are regression coefficients, τ is a
lag between neural activity and kinematics, and δ

p
t is a vector of errors.

The sample moments in equation 2.9 are approximately gaussian by the
central limit theorem and their expectations are linear in x, so equation
2.9 can be used as linear gaussian observation equations in addition to the
spike count observation equations (see equation 2.7) when decoding using
OLE or Kalman filtering, and wp

t−τ can be used as additional predictors (see
equation 2.6) when decoding using reverse regression. Kinematic predic-
tions from these augmented models are obtained in closed form because
they are linear and gaussian. Other waveform summaries also have linear
expectations and can thus be similarly used for decoding. In particular,

1Beware: for the linear relationship to hold, the sample average must include wp
0 when

no spike is observed; that is, if the spike count in the bin of size δ centered at t is st, then

wp
t = δ−1{∑st

i=1 wp
t,i + (δ − st )w

p
0}.
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letting Wi denote the ith component of the vector of waveform features W,
we can prove as above that the cross-moments E(

∏
i W

pi
i | x) are linear in x

for all pi ∈ N when neurons have linear tuning curves.

2.3.1 Illustrative Toy Example. Assume that an electrode records two neu-
rons tuned to a 1D kinematic x ∈ [0, 1], with λ1(x) = x and λ2(x) = 1 − x.
Ignoring coincident spikes, the firing rate of the electrode is τ (x) = 1, a
constant of x, so the unsorted electrode spike train provides no information
to decode x. Assume that 1D waveform features W have gaussian distri-
butions with mean 1 and variance 0.1 for one neuron, and mean 2 and
variance 1 for the other. The regression of w on x estimates the first moment
E (W | x) = λ1(x) · 1 + λ2(x) · 2 = 2 − x: it depends on x, so it provides in-
formation to decode x. The second sample moment also provides informa-
tion about x since E

(
W2 | x

) = λ1(x)
(
12 + 0.1

) + λ2(x)
(
22 + 1

) = 5 − 3.9x
depends on x. And so on. If the 1D waveform features have equal means
1 and variances 0.1 and 1, respectively, then E (W | x) = 0 and E

(
W2 | x

) =
λ1(x)

(
12 + 0.1

) + λ2(x)
(
12 + 1

) = 2 − 0.9x: the first moment no longer de-
pends on x but the second moment does and thus provides information
about x.

Equation 2.9 is valid for all p, but different waveform moments contribute
different amounts of information about the kinematics, as illustrated in the
toy example. In principle, a distribution can be summarized by all its mo-
ments and cross-moments because there exists a dual mapping between
distributions and moment-generating functions (Feller, 1968). Therefore,
the full set of waveform sample moments and cross-moments contains all
the information in equation 2.4 about x. But they also contain noise since
they are estimated from data. Using several of them for decoding may
contribute additional kinematic information, but using too many will con-
tribute more noise than signal. How many and which to include depends
on many factors, including the number of neurons recorded by each elec-
trode, the amount of noise, and the adequacy of the models. For example,
if an electrode records only one neuron, then all its waveform moments
(see equation 2.9) are proportional to its spike counts (see equation 2.7),
on expectation, so none provides additional information, and using any of
them in the decoding model in addition to the spike counts is bound to
increase the variance of the kinematic predictions. We need to select which
sample moments and cross-moments to use for decoding.

2.3.2 Model Selection for Reverse Regression. To capture the kinematic in-
formation in the waveform moments, we replace the decoding model based
on unsorted spike counts (see equation 2.6) by

xkt = δk0 + dT
k ut−τ + ζkt, k = 1, 2, . . . , (2.10)
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where ut−τ is the vector containing the lagged spike counts st−τ and a num-

ber of waveform moments and cross-moments wt−τ , w2
t−τ , etc. To balance

the bias and variance of the kinematic predictions to achieve the minimum
expected prediction error, we fit equation 2.10 to training data using Lasso
(Tibshirani, 1996), with the prediction error estimated by 10-fold cross-
validated MSE.

2.3.3 Model Selection for OLE and Kalman Filtering. Ideally, we would
score all models composed of any subset of the available spike count
and moment equations (equations 2.7 and 2.9), to identify the minimum
prediction error model. But such an exhaustive search is prohibitively
time-consuming so we apply instead a greedier added variable test (AVT)
procedure. We first include in the model all unsorted spike count equations
(see equation 2.7), because it is the current practice and it helps evaluate
the benefit of adding waveform moment observation equations. We then
add waveform moment equations sequentially only if they contain kine-
matic information that is not already explained by the current model, as
determined by an added variable test. For example, if the spike counts s
and first waveform moments w of all electrodes are already in the model
and we consider adding the second moment w2 of one of the electrode’s
waveform features, we regress w2 on s and w, and we test if adding the
kinematics as regressors explains additional variability in w2. If it does,
we add the moment equation for w2 to the decoding model. We proceed
similarly for each waveform moment in turn. The size of the resulting de-
coding model increases with the significance level α of the added variable
test. The decoding accuracy for the data analyzed in section 3 was stable
for α ∈ [1, 10]%, so we used α = 1% because smaller models allow faster
decoding.

The AVT model selection prevents highly correlated observation equa-
tions from entering the model. The equations in the model are nevertheless
correlated so it is important to estimate jointly the variance-covariance ma-
trix of the errors (ηt, δ

p
t ) in equations 2.7 and 2.9. This algorithm does not

explicitly build decoding models that minimize the prediction error: better
models exist. In particular, we enter the unsorted spike count equations
(see equation 2.7) in the model by default, although they do not necessar-
ily contain more kinematic information than waveform moments, as we
illustrated in the toy example.

2.4 Decoding Methods Summary. We predict kinematics using the
three linear decoding paradigms described in section 2.2: reverse regres-
sion (RR), OLE, and Kalman filtering (KF), which use as inputs:

• The unsorted spike counts (SC, see section 2.2).
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• The unsorted spike counts and a set of waveform features sample
moments wp (see equation 2.9; see section 2.3). We consider two
models (plus another in appendix B):

M1 includes all spike counts and the first three moments (p =
1, 2, 3) of only one feature: the waveform amplitude. No model
selection is performed.
M2 includes all spike counts, AVT selected waveform moments
of order up to p = 5 of the four waveform features depicted in
Figure 2B, and AVT selected cross-moments of order two.

• Sorted spikes counts (see section 2.2). Two expert sorters are applied:
Manual: units are carefully sorted by a human expert using tem-
plate matching.
FMM: units are sorted using the focused mixture model of Carlson
et al. (2014).

We also consider decoding from sorted spike counts together with the
first moment of waveform amplitudes to assess spike sorting quality rather
than decoding accuracy (see the gray box plots in Figure 2).

3 Results

We evaluate the performances of the linear models listed in section 2.4 to
decode the arm velocity of a rhesus macaque in an experiment performed
in Andrew Schwartz’s MotorLab (Fraser & Schwartz, 2012; Todorova et al.,
2014), using the neural signal recorded in ventral premotor cortex on the
71 active electrodes of a 96-electrode Utah array. Specifically, we decode
velocity from unsorted spike counts alone and together with waveform
moments, from units carefully sorted by a human expert and from units
sorted using the state-of the-art focused mixture model (FMM) sorter of
Carlson et al. (2014), which has achieved remarkable accuracies in several
data sets. We use the default settings for FMM to keep the procedure au-
tomatic and thus ignore customizable options such as adjusting manually
the number of clusters and aligning the waveforms.

The four waveform features we consider are the peak-to-trough ampli-
tude, the time elapsed from peak to trough, the size of the trough, and its
width at half minimum; they are depicted in Figure 2B. We standardize
the features on each electrode to reduce the influence of extreme values on
the fit of the moment equations (see equation 2.9) when p is large. We con-
sider two models based on spikes and waveforms. Model M1 includes the
unsorted spike counts of the 71 active electrodes and the 3 × 71 first three
moments of a single feature, the waveform amplitude; the variables in this
model are not selected in any optimal way. Model M2 aims to include more
predictive waveform moments among the moments of order up to p = 5
for the four features, and the cross-moments of order two. We use LASSO
to select these moments for RR decoding and the AVT sequential selection
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Figure 2: (A) Experimental data: Arm position over several center-out and
out-center reaches to 26 targets in 3D. (B) Waveform features whose moments
we consider: F1: amplitude; F2: time elapsed from peak to trough voltage;
F3: size of trough; F4: width of trough at half minimum. (C) Efficiencies of
decoding from unsorted spike counts and waveform moments (M1, M2) and
from sorted spike counts (manual, FMM) relative to decoding from unsorted
spike counts alone (SC). Adding waveform moments to unsorted spike counts
improves decoding across paradigms. The shadow boxes show the efficien-
cies of decoding from sorted spike counts together with the waveform ampli-
tude first moment: improvements suggest that spike sorting was not perfect.
(D) Efficiencies of the same methods as in C but relative to decoding from FMM
sorted neurons. Model M2 is as efficient as decoding from FMM sorted data.

procedure for OLE and KF (see section 2.3), first considering the 4 × 71 =
284 first moments, then the 284 second moments, the

(4
2

) × 71 = 426 cross-
moments, and finally the third, fourth, and fifth moments in sequence. The
numbers of moments of each order that entered model M2 on average over
all training sets are summarized in Table 1.



Incorporating Spike Waveform Information into Decoding Algorithms 1043

Table 1: Number of Waveform Moments Selected for Model M2.

Moment type

1st 2nd Cross 3rd 4th 5th

Total number 284 426 284

Number selected for RR 136 109 162 67 24 59
Number selected for OLE and KF 124 75 46 40 17 10

We have four days of data with five sessions per day, one session con-
taining 52 reaches to and from 26 targets arranged evenly on a virtual 3D
sphere (see Figure 2A). We analyze only the portion of the reaches between
movement onset and target acquisition, which sums to 8 minutes of data.
We bin the spikes in 16 ms time windows, lagged τ = 8 bins (128 ms) com-
pared to arm movement, where τ = 8 is the integer value in [0, 12] that
maximizes the average R2 of the electrodes’ tuning curve models in equa-
tion 2.7. We use four sessions recorded on the same day (208 trials) to train
all decoding models, and we decode the 52 reaches of the remaining session
of that day to evaluate the various methods, initializing the decoders at the
observed initial velocity for each trial. We repeat this for all combinations of
four sessions in each of the five days, thereby creating 5 × 4 = 20 training
sets and 20 × 52 = 1040 test trials.

We measure the accuracy of a decoded reach by its mean squared er-
ror (MSE) and the relative efficiency of two decoders by their MSE ratio.
The median absolute accuracy over the 1040 test trials decoded from un-
sorted spike counts is 0.015, 0.031, and 0.011 m2/s2 for RR, OLE, and KF,
respectively. The last is superior because it uses a prior kinematic model
to smooth the decoded trajectories (see equation 2.8) in addition to the
observation model. The white box plots in Figures 2C and 2D summarize
the efficiencies of the 1040 test trials decoded from unsorted spike counts
and waveform moments and from sorted spike counts, relative to decoding
from unsorted counts alone (see Figure 2C), the current standard in some
labs, and from state-of-the-art FMM-sorted units (see Figure 2D). Because
relative efficiencies above one mean that the reference decoding method
is less efficient, we conclude that (1) decoding from unsorted spike counts
is least efficient; (2) decoding from model M2 is comparable to decoding
from FMM-sorted units and these two methods are more efficient than all
other methods; (3) model M1, which uses three moments of just one fea-
ture, with no model selection, achieves over 90% of the efficiency of the best
methods; and (4) all conclusions listed here hold across all three decoding
paradigms.

Experimental data are often collected carefully, with the electrode volt-
age thresholds chosen to collect clear units. Using more permissive thresh-
olds, or larger electrodes, might result in recording more neurons on each
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electrode, which may render extracting kinematic information from the
waveforms more difficult. We investigated this hypothesis in a data set of
35 synthetic channels, each containing the combined signals of a pair of
randomly selected electrodes. We reached the same conclusions as in the
original data set; in particular, decoding from model M2 and from FMM-
sorted spikes was comparably efficient and more efficient than decoding
from unsorted spike trains. Details can be found in appendix B.

The waveform moments can also be used to judge the quality of spike
sorting for the purpose of decoding. Indeed, if spike sorting retrieved the
true neurons, then adding waveform moments that are modulated by the
kinematics should not contribute additional kinematic information to de-
coders based on the sorted spike counts (see section 2.1 and appendix A).
The shadow gray box plots in Figures 2C and 2D summarize the relative
efficiencies of the 1040 test trials when decoding from sorted spike counts
together with the first moment of the waveform amplitudes. Decoding from
manually sorted units is substantially improved by adding that one wave-
form moment, which suggests that manual sorting was deficient. Adding
the same waveform moment to FMM-sorted units increases the relative
efficiency by less than 2% in median across the 1040 test trials, which sug-
gests that FMM sorting retrieved all or almost all the available kinematic
information. However, this does not necessarily imply that FMM sorting
isolated the true neurons; for example, no kinematic information is lost if
a well-isolated cluster of waveforms contains the spikes of several neurons
that have the same tuning curves or if the spikes of a true neuron get sorted
into several separate units.

Thus far, we have used waveform moments together with unsorted spike
counts to improve decoding from unsorted electrodes. However, if sorted
spikes are available, we could also add a selection of moments to decoding
models based on sorted spikes to retrieve the kinematic information that
might have been lost due to imperfect sorting.

4 Discussion

Spike-based BCI have the potential to restore motor ability to people with
paralysis and amputation. We argued that it is statistically most efficient to
decode from the true neurons’ spike trains, and that the next best option
is to decode from a joint model for the observed electrode spike trains and
the waveforms (Ventura, 2009b). But accurate spike sorters are computa-
tionally demanding and are unlikely to retrieve perfectly the true neurons’
spike trains from the electrode signals. And while both the parametric and
nonparametric joint model implementations of Kloosterman et al. (2014)
and Todorova et al. (2014) have proven valuable for decoding, they are
too computer intensive to implement for real-time applications. The main
contribution of this letter is a linear implementation of the decoding joint
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model for the electrode spike counts and waveform features, which is fully
automatic, fast to fit to training data, yields closed-form predictions, and is
therefore well suited for real-time decoding. It has low storage and compu-
tational requirements: we need only collect the electrode spike trains and
a few low-dimensional waveform features, and calculate spike counts and
sample averages of these features. The method implicitly extracts kinematic
information from individual neurons without sorting the electrode signals
and avoids the explicit definition and estimation of the waveform feature
distributions and the number of neurons recorded by the electrodes. We
show that to reconstruct arm trajectories offline of a nonhuman primate, the
proposed linear decoder outperforms decoding from unsorted spike counts
alone and performs comparably to decoding from spike counts sorted using
a recent state-of-the-art method.

Our method is general and should apply offline and online whenever the
neural data are recorded by electrodes that capture the activities of several
neurons. Its promise lies in its low computational and storage overhaul,
both very important for online decoding where bandwidth may be limited
and the decoder parameters must be updated often.

4.1 Model Selection. We reduced the waveforms to four shift-invariant
features; better choices may exist. We considered moments of these features
of order up to p = 5 and cross-moments of order two, and moments of
split electrodes in appendix C. Other summary statistics of the waveforms
could be similarly considered provided they are linearly associated with the
kinematics, for example, moments of order p, with p a real number instead
of an integer. We recommend including in the decoding model either a
small number of low-order moments of these features (using too many
will increase the variance of the predictions) or a selection of moments
using Lasso for reverse regression and the sequential added variable test
procedure for OLE and Kalman filtering. That procedure does not explicitly
minimize the prediction error of the model, so developing one that does
would be useful. Similarly, there might be more computationally efficient
alternatives to Lasso with better behavior on highly correlated predictors
such as the stagewise algorithm of Tibshirani (2014).

4.2 Robustness to Model Assumptions. We assumed normally dis-
tributed spike counts, and linear observation and state equations. General
point process models (Barbieri et al., 2004) would be more appropriate, but
we did not consider them because they do not yield kinematic predictions
in closed form. To capture nonlinearities between firing rates and kinemat-
ics, the forward decoding model could be extended to an additive model of
nonparametric transformations of the spike counts and waveform moments
(Wagenaar, Ventura, & Weber, 2009; Warland et al., 1997), and nonparamet-
ric response transformation models could be used for the spike count and
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moment equations in equations 2.7 and 2.9. To decode, we fixed every unit’s
temporal lag with respect to the kinematic variables to the mean estimated
lag of the unsorted electrodes’ tuning curves models (see equation 2.7). Us-
ing different lags can improve decoding (Wu, Gao, Bienenstock, Donoghue,
& Black, 2006). Our model does not account for possible data nonstation-
arities, but it could be updated regularly at minimal computational cost
to track potential waveform changes. We expect that more modeling re-
finements would not affect much the relative statistical efficiencies of the
decoding methods presented here.

Appendix A

We prove that decoding from perfectly sorted neurons and from the joint
model for the electrode spike trains and waveforms are equivalent either
when the model in equation 2.4 isolates neurons perfectly or when π j(x) =
π j for all j, because then the two models have proportional likelihoods and
thus yield the same predictions.

The likelihood of a spike under the joint model is the product of the con-
ditional and marginal distributions in equations 2.4 and 2.3; the likelihood
of a sorted spike is the product of equation 2.1 over the K units. When no
spike is recorded at time t, these likelihoods are proportional: [1 − τ (x)] f0

and
∏K

j=1[1 − λ j(x)] ≈ 1 − ∑K
j=1 λ j(x) = 1 − τ (x), ignoring once again the

coincident spikes for the sake of notational simplicity. When a spike with
waveform w is observed:

� Perfect waveform separation implies fk(w) �= 0 when unit k spiked,
and f j(w) = 0 for all j �= k. Then the likelihood of the sorted
spike is λk(x)(

∏
j �=k[1 − λ j(x)]) ≈ λk(x), which is proportional to the

joint model likelihood, τ (x)(
∑K

j=1 π j(x) f j(w)) = τ (x)(πk(x) fk(w)) =
λk(x) fk(w).

� π j(xt ) = π j implies λ j(x) = π j τ (x). Then the likelihood of the sorted
spike is λk(x)(

∏
j �=k[1 − λ j(x)]) ≈ λk(x) if it is assigned fully to neu-

ron k; or
∏K

j=1[λ j(x)]α j with α j = π j f j(w)/
∑K

k=1 πk fk(w) if prob-
abilistic assignments are used (Ventura, 2009b), which reduces to
(
∏K

j=1 π
α j

j )τ (x), since λ j(x) = π j τ (x) and
∑

j α j = 1. The likelihood

of the joint model is τ (xt )(
∑K

j=1 π j f j(w)), which is proportional to
the likelihood of the sorted spike since τ (x) ∝ λk(x).

� Note that λk(x) = πk τ (x) means that the neurons have firing rates
proportional to the electrode’s, in which case sorting its spikes does
not provide additional information compared to using the electrode
as a putative neuron.
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Figure 3: (A) Waveforms and features of two representative combined elec-
trodes, each composed of the signals of two original electrodes, shown in
gray and black. (B) Efficiencies of decoding from spike counts alone and to-
gether with waveform moments relative to decoding from unsorted electrodes.
Adding waveform moments to unsorted spike counts improves decoding across
paradigms. Models M2 and M3 are at least as efficient as decoding from expertly
sorted data; M3 is slightly superior.

Appendix B: Results of Combined Electrodes

We decode from pairs of aggregated electrodes to investigate if extracting
kinematic information from waveform moments is more difficult when
electrodes record more units than in the original data. Because electrodes
that are closer to neurons record larger waveforms and their thresholds
tend to be larger, we scale the waveforms by their respective thresholds
before combining electrodes. Figure 3A shows the waveforms and their four
features for two representative combined electrodes. Figure 3B summarizes
the efficiencies of the 1040 test trials decoded from the joint linear model M2
and from FMM-sorted spikes (we do not have manually sorted units for the
combined electrodes data) relative to decoding from unsorted spike counts:
the two decoders are comparably efficient and more efficient than decoding
from unsorted electrodes. Figure 3B also shows the relative efficiency of
the joint linear model M3, which is somewhat more efficient than M2. This
model is described in appendix C.
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Figure 4: Efficiencies of decoding from unsorted spike counts and waveform
moments (M1, M2, M3) and from sorted spike counts (Manual, FMM) relative
to decoding from unsorted spike counts alone (SC). This is the same figure as
Figure 2C, with the efficiencies of model M3 added: M3 is the most efficient of
all decoders we investigated.

Note that the FMM sorter did not retrieve the units it identified in the
original data, so the quality of spike sorting is questionable. It is likely that
sorting could be improved by tweaking the parameters of the algorithm,
but we did not attempt this so that the procedure would remain automatic.

Appendix C: Splitting Electrodes

We define “splitting” an electrode along the 1D waveform feature W as
forming K equal-sized disjoint clusters (ω j−1, ω j], where wj is the (100 j/K)th
observed percentile of the feature in a training set. Todorova et al. (2014)
used four-way splitting as a crude spike sorter for the purpose of decoding
kinematics. Here we consider split sorting for this and another purpose:
when electrodes capture the signals of many neurons, many waveform mo-
ments may be needed to capture the kinematic information they provide.
A split can also be viewed as an electrode that records a restricted range of
waveforms likely produced by a subset of these neurons and whose wave-
form features distribution may be well summarized by fewer moments.

To investigate this possibility, we decode our data using model M3, which
includes the unsorted/unsplit spike counts by default, and selected split
spike counts, unsplit and split first moments of the four features, unsplit
and split second moments of the four features, unsplit cross-moments, and,
finally, selected third, fourth, and fifth unsplit moments of the four features.
We consider only the first two moments of the electrodes’ splits to control the
size of the model. We use K = 4 splits for each feature on all electrodes and
drop one split per feature because the sum of the spike counts and moments
over the four splits is proportional to the corresponding unsorted/unsplit
electrode spike count and moment. Selection is carried out using Lasso for
RR and AVT for OLE/KF. Figures 4 and 3 show that model M3 provides
some improvement over model M2. Using K = 8 splits instead of 4 provided
yet slightly better results, suggesting that K could be chosen to lower the
prediction risk of the decoder.
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