
APPLIED TIME SERIES - 36-728 - SPRING 2011 Mini 2

Assignment 3 - SOLUTIONS

1 Problem 5.1

(a)

This looks like an ARMA(2,1).
The characteristic polynomial is φ = 1− x+ 0.25x2.
To find the roots, we can either factorize the polynomial by hand or use the polyroot function
in R (here, polyroot(z=c(1,-1,0.25)) for example.
We find that there is a unique root at x = 2, and since |2| > 1, this process is stationary.
So, it is an ARMA(2,1) with φ1 = 1, φ2 = −0.25 and θ1 = 0.1.

Note: To check stationarity, we can also use the conditions of Equation (4.3.11), page 72, because
this is an AR model of order 2. Here φ1 +φ2 = 0.75 < 1, φ2−φ1 = 1.25 < 1, and |φ2| = 0.25 < 1,
so the process is a stationary. But this technique is not as general, so we recommend to practice
using the characteristic polynomial instead.

(b)

This looks like an AR(2) model, with φ1 = 2 and φ2 = −1.
However, the characteristic polynomial is 1 − 2x + x2, which has root x = 1, so this process is
not stationary. (Alternately, φ1 +φ2 = 1, not strictly less than 1, so the process is not stationary
according to the conditions for AR(2) models on page 72.)
Consider then the differences:

Yt − Yt−1 = 2Yt−1 − Yt−2 + et − Yt−1

= (Yt−1 − Yt−2) + et

This looks like an AR(1) model. But then, the characteristic polynomial would be φ(x) = 1− x,
with root x = 1, so it’s not a stationary process.
We thus look at the second differences:

(Yt − Yt−1)− (Yt−1 − Yt−2) = Yt−1 − Yt−2 + et − (Yt−1 − Yt−2)

= et

which is just white noise.
So, Yt is an IMA(2,0) model, or ARIMA(0,2,0).

(c)

The characteristic polynomial for the AR part is φ(x) = 1− 0.5x+ 0.5x2.
The roots of this polynomial are 0.5 + 1.322876i and 0.5− 1.322876i.
Both have modulus

√
0.52 + 1.3228762 =

√
2, which is greater than 1.

Hence, this is a stationary process.
So, it is an ARMA(2,2) model with φ1 = 0.5, φ2 = 0.5, θ1 = 0.5, and θ2 = 0.25.
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The answer above gives full credit, but technically we also need to verify that the MA part of
the process is invertible.
The MA characteristic polynomial is 1 + 0.5x− 0.25x2.
It has root −1.236068 − 0i and 3.236068 + 0i, which both have modulus greater than 1, so the
process indeed is invertible.

2 Problem 5.13

(a)

There is a clear general increasing trend in the monthly number of airline passengers. We observe
as well a seasonal trend (more travel in summer). We also see an increased variation in the later
years. Note that here, σ2

t = Var(Yt) is some increasing function g of µt = E(Yt). Perhaps,
σ2
t ∝ µt or σ2

t ∝ µ2
t , which would indicate the need for a square root or log transformation.
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(b)

The log transformation makes the variation similar for all of the time series.
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[The following is not graded.]
As we observed in part (a), a square root transformation might also be appropriate in this case.
The figure below compares the effect of the log transformation and the square root transformation
on the raw data. The log transformation indeed appears to stabilize the variance better.
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(c)

There is a very strong linear relationship between the two quantities (we can check that R2 =
0.999). The values are actually almost identical in most cases, as indicated by the identity line.
Small departures from identity occur mostly at the extreme: percentage changes are larger than
difference of logs for both very small and very large differences of logs. This is to be expected
since the expansion log(1 + x) ≈ x is best when x→ 0 (x is the percent change our case).
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3 Problem 5.14

(a)

Simply calling BoxCox.ar on the dataset gives an MLE of 0.2, with a 95% C.I. from 0 to 0.5.
We will use 0.2 for the remainder of this problem, but any value in the confidence interval will
receive full credit.

Note that by default the BoxCox.ar function uses a grid with increments 0.1 to calculate the
MLE. To get a more precise value, you can change the ’lambda’ argument to the function call.
We find that way that the MLE for this problem is closer to 0.25.
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(b)

Comparing the QQplot for the transformed data (below) to the one of the raw data (textbook
exhibit 3.17, p.50), we see that the Box-Cox transformation indeed made the data more normal.
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(c)

This transformed series could now be considered as normal white noise with a nonzero mean.
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(d)

We still observe no relationship between the values for a year and that of the previous year.
Transforming the data can modify the form the relationship between the variables, but it cannot
induce correlation where none was present.
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4 Problem 5.16

(a)

Daily price of gold for the 252 trading days of 2005

Day
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ice

0 50 100 150 200 250

420

440

460

480

500

520

540

The daily price of gold in the first half of the year is relatively constant, but then there is a clear
increase in the second part of the year.
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(b)

First difference of the log of the daily price gold for the 252 trading days of 2005

Day
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The series now almost looks stationary, except that the variance appears to be increasing with
time.

(c)
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We notice that none of the lags show very significant ACF. Moreover, there does not seem to
be any pattern in the ACF for different lag times. We thus conclude that the differences of the
logarithms of gold prices display the autocorrelation structure of white noise. Therefore, the
logarithms of gold prices could be considered as a random walk.
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(d)

Histogram of the first difference of the logs of gold price
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The distribution of the difference of logs is unimodal and reasonably symmetric, except for larger
tails for large values than for small values. Overall, we might think that this distribution looks
reasonably like a normal distribution.

(e)
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The Q-Q plot indicates that the distribution deviates from normality. In particular, the tails are
lighter than those of a normal distribution. Note that this plot is much better than an histogram
to verify normality; histograms should not be used for that purpose.
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5 Problem 6.36

(a)

It is not completely clear from this plot alone whether the series is stationary. We might want to
try a stationary model, but there is also enough drift that we might also suspect nonstationarity.
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(b)
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These plots are are not especially definitive. The ACF shows a decay that could be consistent
with an AR model, but the decay is alarmingly slow, which may suggest non-stationarity. The
pacf suggests possibly an AR(3) model for the series.
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(c)

AR/MA

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 x x x x x x x x x o x x x x

1 x o o o o o o o o o o o o o

2 x x o o o o o o o o o o o o

3 x x o o o o o o o o o o o o

4 x x x x o o o o o o o o x o

5 x x x o o o o o o o o o x o

6 x o o o o x o o o o o o o o

7 x o o x o x x o o o o o o o

The EACF suggests an ARMA(1,1) model.

(d)

Unlike the hare data discussed in class, the sample size is large for this dataset, so it will be
easier to search for a subset ARMA model within a large family of ARMA models. So, I ran the
armasubsets function for several MA and AR orders, as follows:

par(mfrow=c(3,3))

plot(armasubsets(robot,nma=4,nar=4))

plot(armasubsets(robot,nma=6,nar=6))

plot(armasubsets(robot,nma=8,nar=8))

plot(armasubsets(robot,nma=10,nar=10))

plot(armasubsets(robot,nma=12,nar=12))

plot(armasubsets(robot,nma=14,nar=14))

plot(armasubsets(robot,nma=16,nar=16))

plot(armasubsets(robot,nma=18,nar=18))

The output can be found on the next page. We see that depending on the size of that ARMA
family of models to be fitted, the best models are different. But the AR(1) model with some
subsets of MA terms appear quite consistently. Possible models are subset ARMA(12,9, 7 or 5)
with φ2 to φ9 set to zero. I don’t see much scientific basis for such models, but would still retain
them as potential models in case I do not find anything better.

10



B
IC

(I
n

te
rc

e
p

t)

Y
−

la
g

1

Y
−

la
g

2

Y
−

la
g

3

Y
−

la
g

4

e
rr

o
r−

la
g

1

e
rr

o
r−

la
g

2

e
rr

o
r−

la
g

3

e
rr

o
r−

la
g

4

−11
−17
−21
−22
−26
−31
−35
−40

B
IC

(I
n

te
rc

e
p

t)

Y
−

la
g

1

Y
−

la
g

2

Y
−

la
g

3

Y
−

la
g

4

Y
−

la
g

5

Y
−

la
g

6

e
rr

o
r−

la
g

1

e
rr

o
r−

la
g

2

e
rr

o
r−

la
g

3

e
rr

o
r−

la
g

4

e
rr

o
r−

la
g

5

e
rr

o
r−

la
g

6

−17
−21
−22
−27
−31
−35
−38
−40

B
IC

(I
n

te
rc

e
p

t)
Y

−
la

g
1

Y
−

la
g

2
Y

−
la

g
3

Y
−

la
g

4
Y

−
la

g
5

Y
−

la
g

6
Y

−
la

g
7

Y
−

la
g

8
e

rr
o

r−
la

g
1

e
rr

o
r−

la
g

2
e

rr
o

r−
la

g
3

e
rr

o
r−

la
g

4
e

rr
o

r−
la

g
5

e
rr

o
r−

la
g

6
e

rr
o

r−
la

g
7

e
rr

o
r−

la
g

8

−15
−20
−20
−25
−29
−33
−35
−37

B
IC

(I
n

te
rc

e
p

t)
Y

−
la

g
1

Y
−

la
g

2
Y

−
la

g
3

Y
−

la
g

4
Y

−
la

g
5

Y
−

la
g

6
Y

−
la

g
7

Y
−

la
g

8
Y

−
la

g
9

Y
−

la
g

1
0

e
rr

o
r−

la
g

1
e

rr
o

r−
la

g
2

e
rr

o
r−

la
g

3
e

rr
o

r−
la

g
4

e
rr

o
r−

la
g

5
e

rr
o

r−
la

g
6

e
rr

o
r−

la
g

7
e

rr
o

r−
la

g
8

e
rr

o
r−

la
g

9
e

rr
o

r−
la

g
1

0

−14
−16
−19
−24
−28
−30
−31
−33

B
IC

(I
n

te
rc

e
p

t)
Y

−
la

g
1

Y
−

la
g

2
Y

−
la

g
3

Y
−

la
g

4
Y

−
la

g
5

Y
−

la
g

6
Y

−
la

g
7

Y
−

la
g

8
Y

−
la

g
9

Y
−

la
g

1
0

Y
−

la
g

1
1

Y
−

la
g

1
2

e
rr

o
r−

la
g

1
e

rr
o

r−
la

g
2

e
rr

o
r−

la
g

3
e

rr
o

r−
la

g
4

e
rr

o
r−

la
g

5
e

rr
o

r−
la

g
6

e
rr

o
r−

la
g

7
e

rr
o

r−
la

g
8

e
rr

o
r−

la
g

9
e

rr
o

r−
la

g
1

0
e

rr
o

r−
la

g
1

1
e

rr
o

r−
la

g
1

2

−14
−16
−19
−24
−28
−30
−30
−31

B
IC

(I
n

te
rc

e
p

t)
Y

−
la

g
1

Y
−

la
g

2
Y

−
la

g
3

Y
−

la
g

4
Y

−
la

g
5

Y
−

la
g

6
Y

−
la

g
7

Y
−

la
g

8
Y

−
la

g
9

Y
−

la
g

1
0

Y
−

la
g

1
1

Y
−

la
g

1
2

Y
−

la
g

1
3

Y
−

la
g

1
4

e
rr

o
r−

la
g

3
e

rr
o

r−
la

g
4

e
rr

o
r−

la
g

5
e

rr
o

r−
la

g
6

e
rr

o
r−

la
g

7
e

rr
o

r−
la

g
8

e
rr

o
r−

la
g

9
e

rr
o

r−
la

g
1

0
e

rr
o

r−
la

g
1

1
e

rr
o

r−
la

g
1

2
e

rr
o

r−
la

g
1

3
e

rr
o

r−
la

g
1

4
e

rr
o

r−
la

g
1

e
rr

o
r−

la
g

2

−7.4−12−15−17−22−26−28−28−29

B
IC

(I
n

te
rc

e
p

t)
Y

−
la

g
1

Y
−

la
g

2
Y

−
la

g
3

Y
−

la
g

4
Y

−
la

g
5

Y
−

la
g

6
Y

−
la

g
7

Y
−

la
g

8
Y

−
la

g
9

Y
−

la
g

1
0

Y
−

la
g

1
1

Y
−

la
g

1
2

Y
−

la
g

1
3

Y
−

la
g

1
4

Y
−

la
g

1
5

Y
−

la
g

1
6

e
rr

o
r−

la
g

5
e

rr
o

r−
la

g
6

e
rr

o
r−

la
g

7
e

rr
o

r−
la

g
8

e
rr

o
r−

la
g

9
e

rr
o

r−
la

g
1

0
e

rr
o

r−
la

g
1

1
e

rr
o

r−
la

g
1

2
e

rr
o

r−
la

g
1

3
e

rr
o

r−
la

g
1

4
e

rr
o

r−
la

g
1

5
e

rr
o

r−
la

g
1

6
e

rr
o

r−
la

g
1

e
rr

o
r−

la
g

2
e

rr
o

r−
la

g
3

e
rr

o
r−

la
g

4

−4.6−9.4−13−14−18−23−25−26−27

B
IC

(I
n

te
rc

e
p

t)
Y

−
la

g
1

Y
−

la
g

2
Y

−
la

g
3

Y
−

la
g

4
Y

−
la

g
5

Y
−

la
g

6
Y

−
la

g
7

Y
−

la
g

8
Y

−
la

g
9

Y
−

la
g

1
0

Y
−

la
g

1
1

Y
−

la
g

1
2

Y
−

la
g

1
3

Y
−

la
g

1
4

Y
−

la
g

1
5

Y
−

la
g

1
6

Y
−

la
g

1
7

Y
−

la
g

1
8

e
rr

o
r−

la
g

7
e

rr
o

r−
la

g
8

e
rr

o
r−

la
g

9
e

rr
o

r−
la

g
1

0
e

rr
o

r−
la

g
1

1
e

rr
o

r−
la

g
1

2
e

rr
o

r−
la

g
1

3
e

rr
o

r−
la

g
1

4
e

rr
o

r−
la

g
1

5
e

rr
o

r−
la

g
1

6
e

rr
o

r−
la

g
1

7
e

rr
o

r−
la

g
1

8
e

rr
o

r−
la

g
1

e
rr

o
r−

la
g

2
e

rr
o

r−
la

g
3

e
rr

o
r−

la
g

4
e

rr
o

r−
la

g
5

e
rr

o
r−

la
g

6

−1.7−6.5−10−13−15−20−22−23−24

11



6 Problem 6.37

AR/MA

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 o o o o o o o o o o o o o o

1 o o o o o o o o o o o o o o

2 x x o o o o o o o o o o o o

3 x o o o o o o o o o o o o o

4 x o o o o o o o o o o o o o

5 x x x x x o o o o o o o o o

6 x x o o x o o o o o o o o o

7 x o x o o o o o o o o o o o

This EACF indeed suggests that the logarithms of the L.A. annual rainfall follow a white noise
process.

7 Problem 6.38

Recall that the PACF indicated that an AR(1) model was worthy of first consideration (textbook
p-135).

Now, to obtain the EACF, we must restrict the order of the AR and MA parts considered by
the R function. Otherwise, we get the following error:

Error in AA %*% t(X) : requires numeric/complex matrix/vector arguments

In addition: Warning message:

In ar.ols(z, order.max = i, aic = FALSE, demean = FALSE, intercept = FALSE) :

model order: 18 singularities in the computation of the projection matrix results are only valid up to model order 17

Since we can only consider models up to order 17, we look at 9 AR lags with 7 MA lags. You
can also consider 7 AR lags with 9 MA lags; mot of the outcome will be identical. The EACF
indeed supports an AR(1) or AR(2) model for this series.

AR/MA

0 1 2 3 4 5 6 7

0 x o o o o o o o

1 o o o o o o o o

2 o o o o o o o o

3 x o o o o o o o

4 o o o o o o o o

5 x o o o o o o o

6 x o o o o o o o

7 x o o o o o o o

8 o o o o o o o o

9 o o o o o o o o
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8 Problem 8.1

From Equation (8.1.5), page 180, we have that

√
Var(r̂1) ≈

√
φ2

n
=

√
0.52

100
= 0.05.

So that would expect the lag 1 sample autocorrelation of the residuals to be within 0.1.
The residual autocorrelation of 0.5 is very unusual.

9 Problem 8.2

For an MA model, we can use exactly the same equations are for an AR model by replacing φ
by θ in the equations. Thus, we reach exactly the same conclusion as in 8.1

10 Problem 8.9

We want to compare the fit of an AR(1) model and an IMA(1,1) models for the robot data.

Fit Statistics
First, we fit both models and look at the model fit information returned by the function arima.
We find that for both models the parameters are significantly different from zero. However, the
log-likelihood and AIC values are slightly better for the IMA(1,1) model.

Call:

arima(x = robot, order = c(1, 0, 0))

Coefficients:

ar1 intercept

0.3074 0.0015

s.e. 0.0528 0.0002

sigma^2 estimated as 6.482e-06: log likelihood = 1475.54, aic = -2947.08

Call:

arima(x = robot, order = c(0, 1, 1))

Coefficients:

ma1

-0.8713

s.e. 0.0389

sigma^2 estimated as 6.069e-06: log likelihood = 1480.95, aic = -2959.9

General behavior of the residuals
We now look at the residuals of both models. For the residuals from the AR(1) model, there
seems to be more positive residuals in the first part of the series, and more negative residuals in
the second half. We do not see such a drift for the IMA(1,1) model.

We also plot the residuals against the fitted values, so that we can check variance homogeneity.
Once again, the IMA(1,1) seems to be a better fit than the AR(1) model.
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Normality of the residuals
The QQ-norm plot for the AR(1) looks good, but for the IMA(1,1) model the residuals appear
to deviate slightly from normality in the tails. We could test normality using the Shapiro-Wilks
test, but recall that the test is sensitive to particular assumptions whereas the QQ-norm plot
is not. Also, the plot suggests how the residuals might deviate from normality, and thus might
suggest a way to fix the problem, for example via a transformation.
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Independence of the residuals
We produce ACF plots for both series of residuals. The residuals from the AR(1) model appear to
have too much autocorrelation. The residuals from the IMA(1,1) model are much less correlated
with only one significant autocorrelation at lag 10. Also, the correlations at small lags are not
close to the null confidence bands; otherwise we would have to check if they are significantly
different from zero.
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We confirm our conclusions using the Box-Ljung test:

Box-Ljung test - AR(1) Model

data: residuals from mod_ar

X-squared = 52.5123, df = 11, p-value = 2.201e-07

Box-Ljung test - IMA(1,1) Model

data: residuals from mod_ima

X-squared = 17.0808, df = 11, p-value = 0.1055

These results are also illustrated by the output of the tsdiag() function on the next page.
Finally, we also run the runs test on both series of residuals. The p-value for AR(1) model is
0.174 while the p-value for IMA(1,1) model is 0.00921. So, I would reject independence of the
residuals in the IMA(1,1) model. It is however possible that this particular test may be wrong;
in fact the probability that the test is wrong under the null hypothesis is 5% if the assumptions
of the test are met.
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Figure 1: Diagnostics for AR(1) model
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Figure 2: Diagnostics for IMA(1,1) model
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Overfitting
Finally, we use overfitting to test the adequacy of the models.

First, we compare the fit of the AR(1) model to that of the AR(2) and ARMA(1,1) models:

Call:

arima(x = robot, order = c(1, 0, 0))

Coefficients:

ar1 intercept

0.3074 0.0015

s.e. 0.0528 0.0002

sigma^2 estimated as 6.482e-06: log likelihood = 1475.54, aic = -2947.08

Call:

arima(x = robot, order = c(2, 0, 0))

Coefficients:

ar1 ar2 intercept

0.2525 0.1768 0.0015

s.e. 0.0546 0.0546 0.0002

sigma^2 estimated as 6.278e-06: log likelihood = 1480.7, aic = -2955.39

Call:

arima(x = robot, order = c(1, 0, 1))

Coefficients:

ar1 ma1 intercept

0.9472 -0.8062 0.0015

s.e. 0.0309 0.0609 0.0005

sigma^2 estimated as 5.948e-06: log likelihood = 1489.3, aic = -2972.61

While φ̂1 looks stable when we add another AR term, it changes a lot when we add an MA term.
Moreover, both φ̂2 and θ̂1 differ significantly from zero. Overall, this indicates that the AR(1) is
a poor fit to the data.
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We now compare the fit from the IMA(1,1), that is ARIMA(0,1,1), to the ARIMA(1,1,1) and
the ARIMA(0,1,2) models.

Call:

arima(x = robot, order = c(0, 1, 1))

Coefficients:

ma1

-0.8713

s.e. 0.0389

sigma^2 estimated as 6.069e-06: log likelihood = 1480.95, aic = -2959.9

Call:

arima(x = robot, order = c(1, 1, 1))

Coefficients:

ar1 ma1

0.1208 -0.9215

s.e. 0.0715 0.0429

sigma^2 estimated as 6.012e-06: log likelihood = 1482.35, aic = -2960.7

Call:

arima(x = robot, order = c(0, 1, 2))

Coefficients:

ma1 ma2

-0.8088 -0.0930

s.e. 0.0540 0.0594

sigma^2 estimated as 6.02e-06: log likelihood = 1482.18, aic = -2960.36

The estimate for φ1 is similar under the three models, which indicates stability of the IMA(1,1)
model. Also, neither the extra φ̂1 nor θ̂2 differ significantly from zero. The IMA(1,1) is thus a
good fit to this series.

Conclusion
Overall, the IMA(1,1) model appears to a be a better fit to the series than the AR(1) model.
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