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Abstract
Kinematic state feedback is important for neuroprostheses to generate stable and adaptive
movements of an extremity. State information, represented in the firing rates of populations of
primary afferent (PA) neurons, can be recorded at the level of the dorsal root ganglia (DRG).
Previous work in cats showed the feasibility of using DRG recordings to predict the kinematic
state of the hind limb using reverse regression. Although accurate decoding results were
attained, reverse regression does not make efficient use of the information embedded in the
firing rates of the neural population. In this paper, we present decoding results based on
state-space modeling, and show that it is a more principled and more efficient method for
decoding the firing rates in an ensemble of PA neurons. In particular, we show that we can
extract confounded information from neurons that respond to multiple kinematic parameters,
and that including velocity components in the firing rate models significantly increases the
accuracy of the decoded trajectory. We show that, on average, state-space decoding is twice as
efficient as reverse regression for decoding joint and endpoint kinematics.

1. Introduction

Proprioception, or the sensation of movement and position,
results from the integration of afferent inputs in the central
nervous system (CNS). It provides vital information about the
state of the limb during movement and serves as feedback
during motor control to create stable and accurate movements.
In applications where functional electrical stimulation (FES) is
used to restore limb functions such as gait, posture or foot drop,
it is important to be able to include feedback information to be
able to cope with perturbations, muscle fatigue and nonlinear
behavior of the effected muscles (Matjacic et al 2003, Winslow
et al 2003, Weber et al 2007). Accessing and decoding
the activity in native afferent signaling pathways would be a
natural way to determine the kinematic state (i.e. position and
velocity) of the controlled extremity (Haugland and Sinkjaer
1999). Feasibility of this approach has been demonstrated by
controlling the ankle angle in a closed loop controller using

the compound afferent input recorded from LIFE electrodes
by Yoshida (Yoshida and Horch 1996). However, a larger and
more diverse population of primary afferent (PA) recordings
is needed to attain a more complete estimate of limb state.
One solution is to record at the dorsal root ganglia (DRG)
where all proprioceptive information converges into the CNS.
Recording at this site with multi-electrode arrays grants access
to a wide variety of state information distributed across many
individual neurons (Stein et al 2004b, Weber et al 2006, 2007).

Although it is generally accepted that proprioception is
evoked by a variety of PA inputs, including muscle, cutaneous
and joint receptors, the muscle spindle afferents are believed
to be the main contributor (Gandevia et al 1992). Various
models with increasing complexity have been proposed for
the muscle spindle firing rate (Matthews 1964, Poppele and
Bowman 1970, Prochazka and Gorassini 1998, Mileusnic et al
2006). These models are able to provide accurate predictions
of spindle firing rates as a function of muscle length and
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Figure 1. The animal was positioned in a custom-designed frame to support the torso and pelvis, enabling unrestrained movement of the left
hind limb. The foot was attached to a robotic arm and active markers were placed on the hind limb to track the hind limb kinematics. A
90-channel micro-electrode array was inserted in the L6/L7 DRG and the neural activity was recorded using a programmable real-time
signal processing system (TDT RZ2).

presumed gamma drive inputs. While it might be desirable
to invert these models to decode muscle length or limb state
from the firing rates of muscle spindles, such an inversion is
not trivial because the models are nonlinear, and position and
velocity components of the firing rate are confounded. Similar
limitations are applicable to including cutaneous afferents
as they are often related to limb kinematics in a nonlinear
fashion.

To date, decoding efforts have avoided these difficulties
by directly modeling each of several kinematic variables as
independent functions of the afferent firing rates (Stein et al
2004b, Weber et al 2006). These studies used separate
regression models to estimate the kinematic state of the hind
limb as a weighted sum of the firing rates in a population of
PA neurons recorded in the DRG of cats during passive and
active movements. In this paper, we refer to this approach
as reverse regression since the natural relationships between
the dependent and explanatory variables are reversed. We
will discuss the limitations of that approach and propose an
alternative decoding approach that does have these limitations.
This method consists of modeling the firing rates of the PAs
as functions of the kinematic parameters, and inverting these
models via a state-space procedure to decode simultaneously
all limb kinematics. Preliminary results were presented in
Wagenaar et al (2009). In this paper, we extend the methods
proposed in Wagenaar et al (2009) to include time-derivatives
of the kinematic variables (velocities) and allow for decoding
multiple correlated kinematic variables. We compare the
efficiencies of the resulting estimates with those predicted
using reverse regression (Stein et al 2004b, Weber et al 2006)
and discuss the feasibility of using natural feedback decoding
in neuroprostheses.

Finally, the coordinate frame in which limb kinematics
are decoded has typically been based on polar coordinates of
the endpoint of the limb or the individual joint angles (Weber
et al 2007, Bosco et al 2000). Scott et al (1994) found no
evidence for a particular coordinate frame based on modeling
studies of muscle spindle distributions (Scott and Loeb 1994).

Stein et al (2004) also found no significant difference in
correlation coefficients when comparing PA firing rates to the
kinematic state in polar endpoint coordinates and joint angle
space (Weber et al 2007, Stein et al 2004a). We included both
endpoint and polar coordinates in the analysis of this paper
since both representations are relevant for implementation in
neural prostheses.

2. Methods and data

2.1. Surgical procedures

All procedures were approved by the Institutional Animal
Care and Use Committee of the University of Pittsburgh.
Two animals were used in these procedures. Both
were anesthetized with isoflurane (1–2%) throughout the
experiment. Temperature, end tidal CO2, heart rate, blood
pressure and oxygen saturation were monitored continuously
during the experiments and maintained within normal ranges.
Intravenous catheters were placed in the forelimbs to deliver
fluids and administer drugs. A laminectomy was performed to
expose the L6 and L7 DRG on the left side. At the conclusion
of the experiments, the animals were euthanized with KCL
(120 mg kg−1) injected IV.

2.2. The experiment

A custom frame was designed to support the cat’s torso, spine
and pelvis while allowing the hind limb to move freely through
its full range of motion (figure 1). A stereotaxic frame and
vertebrae clamp were used to support of the head and torso,
and bone screws were placed bilaterally in the iliac crests
to tether the pelvis with stainless steel wire (not shown in
figure 1).

Hind limb kinematics were recorded with a high-speed
motion capture system (Impulse system, PhaseSpace Motion
Capture, USA). Active LED markers were placed on the iliac
crest (IC), hip, knee, ankle and metatarsophalangeal (MTP)
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joints. During post-experiment analysis, the knee position
was inferred from the femur and shank segment lengths and
the hip and ankle markers because skin slip at the knee marker
rendered position tracking based on the knee marker unreliable
(Stein et al 2004b, Weber et al 2006). Synchronization
between neural and kinematic data were ensured by recording
a time-stamp in the neural recording system for every captured
kinematic frame.

A robotic arm (VS6556E, DENSO Robotics, USA ) was
used to move the left foot in the parasagittal plane. The foot
was strapped in a custom holder attached to the robot via
a pivoting joint that allowed free rotation of the foot in the
parasagittal plane (figure 1). The robot was programmed to
generate center-out and random movement patterns occupying
most of the motion range for the foot. Center-out patterns
were ramp and hold displacements of 4 cm in eight directions
from a center position. Random movements, defined by a
uniform distribution of limb positions and velocities within
the workspace, were approximated by manually manipulating
the hind limb through the entire workspace over a period of
5 min. During this time, cameras recorded the trajectory and
programmed the robotic manipulator to mimic this trajectory.
The robot was then used to manipulate the hind limb during the
remainder of the trials. This ensured that we could generate
the same random movement in a reliable fashion and use the
entire workspace of the hind limb optimally.

Penetrating microelectrode arrays (1.5 mm length,
Blackrock Microsystems LLC, USA) were inserted into the
L7 (50 electrodes in 10 × 5 grid) and L6 (40 electrodes in
10 × 4 grid) DRG. The neural data were sampled at 25 kHz
using an RZ-2 real-time signal processing system from Tucker-
Davis Technologies, USA. The neural data were band-pass
filtered between 300 and 3000 Hz. A threshold was manually
determined for each channel and spike events were defined
as each instance the signal exceeded this threshold. Spike
waveform snippets, 32 samples in length (1.2 ms), were stored
each time a spike event occurred, resulting in a time series of
spikes and their corresponding waveforms per channel. Spike
waveforms were sorted manually during the post-experiment
analysis (Offline Sorter, Tucker-Davis Technologies, USA).

2.3. Current decoding paradigm: reverse regression

Let X = (Xk, k = 1, . . . , K) be the vector of K kinematic
variables we want to decode, based on the firing rates FR =
(FRi, i = 1, . . . , I ) of I neurons. In this paper, X is the limb
state expressed in one of two different reference frames, a joint-
based frame with state vector (Ak, k = 1, 2, 3) that represents
intersegmental angles for the hip, knee and ankle joints, and
an endpoint frame with state vector (R, θ) that represents the
toe position relative to the hip in polar coordinates. We
let Ẋ = (Ẋk, k = 1, . . . , K) denote the velocities of the
kinematic variables, and Z = (X, Ẋ) the combined vector
of limb kinematics and their velocities. A subscript t added to
any variable means that we consider the value of that variable
at time t. The methodologies described below can be applied
to firing rates FR that are either raw or smoothed spike counts.
Here, we computed smoothed instantaneous firing rates by

convolving the spike events with a one-sided Gaussian kernel
(σ = 50 ms) to ensure causality (Stein et al 2004b).

Reverse regression consists of modeling the mean of each
kinematic variable Xk as a function of the spike activity:

E(Xk) = fk(FR), k = 1, . . . , K, (1)

where fk is some function deemed appropriate, for example
a linear function as in (3). An estimate f̂k of fk is obtained
by least-squares or maximum likelihood regression using a
training set of simultaneously recorded values of X and FR.
Then, given the observed neurons’ firing rates FRobs

t at time t,
the prediction of Xk at t is

X∗
kt = f̂k

(
FRobs

t

)
, k = 1, . . . , K. (2)

The resulting decoded trajectories {X∗
kt , t = 1, 2, . . .}, k =

1, . . . , K , are typically much more variable than a natural
movement, so they are often smoothed to fall within the
expected response frequencies (typically < 20 Hz).

Reverse regression was used by Weber et al (2006) and
Stein et al (2004b) to predict joint and endpoint kinematics.
They took fk in (1) to be a linear function of the spike activity,
so that

Xk = βk0 +
∑
i∈Sk

βkiFRi + εk, (3)

where Sk indexes the set of neurons whose firing rates
correlate most strongly with Xk (Stein et al 2004b), and εk

are uncorrelated random errors. We adopt the same approach
with our data: we apply reverse regression with the linear
model in (3) to decode joint angles (Ak, k = 1, 2, 3) and limb
end point position (R, θ), and smooth the decoded trajectories
by convolving the result with a Gaussian kernel (σ = 75 ms)
to improve the decoding results.

One advantage of reverse regression is its simplicity:
kinematic variables Xk are decoded separately and require
just one equation each. However, the method does not allow
physiologically meaningful modeling of the relationships
between firing rates and kinematic variables. Indeed, not
only do neurons often encode several kinematic variables
simultaneously, the manner in which they encode these
variables is not necessarily linear or additive. For example,
many muscles in the hind limb span two joints, so that PA
neurons code for multiple joint angles simultaneously. Such a
neuron was shown in Wagenaar et al (2009): its firing rate
depended both on ankle and knee angles, the relationship
between firing rate and ankle angle was clearly nonlinear, and
the relationship changed for different values of knee angle,
which suggested the existence of an interaction between the
two joint angles. Such effects cannot be modeled in reverse
regression. It is also possible for neurons to encode not
only for kinematic variables, but also for their derivatives;
muscle spindle PAs (Ia) are such neurons. In that case it is
possible to decode Xkt based on the relationship between its
velocity Ẋkt ≈ (Xkt − Xk(t−δt ))/δt and the neurons’ firing
rates, by applying reverse regression with Xk replaced by Ẋk

in equations (1) and (2). Based on a linear function fk , this
prediction is

X∗
kt = X∗

k(t−δt )
+ δt

⎛
⎝α̂k0 +

∑
i∈Sk

α̂kiFRobs
it

⎞
⎠ , (4)
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which is different than predicting X∗
kt from (3). Stein et al

(2004) offered an ad hoc method of combining these two
predictions. However, because it is not motivated by a
principle that guarantees superior results over either separate
predictions, we did not consider this method for our data.

2.4. Firing rate models and likelihood decoding

Reverse regression is easy to apply, but it does not make
efficient use of the information in the data since effects such
as interactions or effects of derivatives cannot be accounted
for. In contrast, a likelihood approach can account for such
effects, and is further known to be efficient when the models
involved are appropriate (Kass et al 2005).

The likelihood approach is based on models that describe
the physiological dependences of firing rates on limb state,
which restores the natural relationship between Xk and FRi

that are swapped in the reverse regression approach. That is,
the mean firing rates FRi of each neuron are now modeled as
functions of the kinematic variables Z = (X, Ẋ):

E(FRi) = gi(Z), i = 1, . . . , I, (5)

where the functions gi are selected to accommodate any
suspected effects between covariates, such as interactions.
Sections 2.4.1 and 2.4.2 summarize the functions gi we
considered for our data. Although we could let gi also depend
on higher order derivatives of X, such as acceleration, we
did not consider that option because PA neurons are known
to encode primarily for muscle lengths and their velocities
(Prochazka et al 1977, Loeb et al 1977, Mileusnic et al 2006),
and previous work using reverse regression methods failed to
generate accurate estimates of acceleration (Weber et al 2007).
The maximum likelihood estimates ĝi of gi , i = 1, . . . , I , are
obtained based on a training set of simultaneously recorded
values of Z and FR, and on an assumed distribution for FRi .
Here we used the Gaussian distribution since FRi are smooth
firing rates, but the Bernoulli or Poisson distributions could be
used instead if FRi were raw spike trains (i.e. unfiltered spike
counts). Then, given the observed firing rates FRobs

t at time
t, the prediction of Z is obtained by solving the system of I
equations

FRobs
it = ĝi(Z∗

t ) + εit, i = 1, . . . , I, (6)

for Z∗
t . Note that all components of Z are decoded

simultaneously, whereas they are decoded separately in reverse
regression. When the firing rates are not modulated by the
velocities, so that the gis are functions only of X, solving (6)
amounts to performing standard least square estimation when
the gis are linear functions of their inputs; see the appendix.
Otherwise, it can be challenging. In particular, (6) should
be solved subject to the constraint that the derivatives of the
decoded positions match the decoded velocities.

We did not use likelihood decoding in this paper, partly
because of the technical difficulties just mentioned, but mostly
because state-space models (section 2.5) are superior. We
nevertheless provided details because the likelihood is a
component of the state-space model, and decoding under the
two approaches is related.

2.4.1. Firing rate models in the joint angle frame. We
considered hind limb biomechanics to guide our choice of
physiologically plausible firing rate models in (5), as follows.
We know that the firing rates of muscle spindle afferents
depend primarily on the kinematic state of one or two adjacent
joints since the host muscles are either mono-or bi-articular.
For example, a muscle spindle in the medial gastrocnemius
muscle encodes movement of both the ankle and the knee,
while a muscle spindle in the soleus muscle encodes only the
movements of the ankle. Cutaneous afferent neurons are not
so tightly linked to joint motion, but our previous work shows
that even they exhibit responses that vary systematically with
limb motion (see figure 3 in Stein et al (2004b)). Therefore, we
considered functions gi in (5) that include the effect of a single
joint, s(Aj ) with j = 1, 2 or 3, or the additive effects of two
adjacent joints, s(Aj )+s(Ak) with (j, k) = (1, 2) (ankle/knee)
or (j, k) = (2, 3) (knee/hip). The notation s(A) signifies that
a non-parametric smoother is applied to the covariate A, which
models the potentially nonlinear effect of A on the neuron’s
firing rate. Here, we took s(·) to be splines with four non-
parametric degrees of freedom, but other smoothers could
be used. Figure 3 in Wagenaar et al (2009) also suggested
that interactions between joints might be present, so we also
considered the addition of interaction effects, which we denote
by s(Aj ) : s(Ak), (j, k) = (1, 2) or (2, 3). We also know
that muscle spindle PAs and possibly many rapidly adapting
cutaneous afferents exhibit a velocity-dependent response.
Hence, we allowed the addition of velocity terms s(Ȧj ),
s(Ȧj )+s(Ȧk), or s(Ȧj )∗s(Ȧk) = s(Ȧj )+s(Ȧk)+s(Ȧj ) : s(Ȧk)

in the model for gi in (5). Finally, we also included the
interactions s(Aj ) : s(Ȧj ) between joints and their respective
velocities, because we expect the velocity of a joint to get
smaller when it is close to full extension or full flexion.

Table 1 contains the list of firing rate models we
considered for our data. All models were fitted to all neurons
by maximum likelihood using a standard statistical package
(R, http://www.R-project.org), and the best model for each
neuron was selected by the Bayesian information criterion
(BIC) (Schwarz 1978).

2.4.2. Firing rate models in the limb end point frame. We
took a similar approach to select models for the relationship
between firing rates and limb end point (MTP, or toe marker)
defined by the polar coordinates (R, θ), where R is the distance
from the hip marker to the MTP marker and θ is the angle
between the horizontal and the vector spanned by the hip and
MTP markers. For each neuron, we considered functions gi

in (5) that include either s(R), s(θ), or both, and possibly
their interaction. We also considered the addition of velocity
terms s(Ṙ), s(θ̇), s(Ṙ) + s(θ̇), and their interaction, as well as
s(R) : s(Ṙ) and s(θ) : s(θ̇), the interactions between effects
and their respective velocities. For each neuron, the best model
was determined by BIC.

2.5. State-space models

The firing rate models (5) describe the relationships between
kinematic variables and spiking activity. Newer decoders
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Table 1. List of the 33 models considered to describe the effect of the three joint angles Ak, k = 1, 2, 3, on the firing rates of neurons. The
notation s(·) is a spline basis with four non-parametric degrees of freedom. The notation s(Aj ) ∗ s(Ak) means that the main effects s(Aj ),
s(Ak), and their interaction s(Aj ) : s(Ak) are included in the model.

Index Model description Variations

1 gi = β0i

2–4 gi = β0i + s(Aj ) j = 1, 2, 3
5–6 gi = β0i + s(Aj ) + s(Ak) (j, k) = (1, 2), (2, 3)
7–8 gi = β0i + s(Aj ) ∗ s(Ak) (j, k) = (1, 2), (2, 3)

9–11 gi = β0i + s(Ȧj ) j = 1, 2, 3
12–14 gi = β0i + s(Aj ) ∗ s(Ȧj ) j = 1, 2, 3
15–18 gi = β0i + s(Aj ) ∗ s(Ȧj ) + s(Ak) (j, k) = (1, 2), (2, 1), (2, 3), (3, 2)

19–22 gi = β0i + s(Aj ) ∗ s(Ak) + s(Ȧk) (j, k) = (1, 2), (2, 1), (2, 3), (3, 2)

23–25 gi = β0i + s(Aj ) + s(Ȧj ) j = 1, 2, 3
26–27 gi = β0i + s(Aj ) ∗ s(Ȧj ) + s(Ak) ∗ s(Ȧk) (j, k) = (1, 2), (2, 3)

28–31 gi = β0i + s(Aj ) + s(Ȧj ) + s(Ak) (j, k) = (1, 2), (2, 1), (2, 3), (3, 2)

32–33 gi = β0i + s(Aj ) ∗ s(Ak) + s(Ȧj ) + s(Ȧk) (j, k) = (1, 2), (2, 3)

provide significant improvements in decoding performance by
supplementing the firing rate models with a probabilistic model
that describes the intrinsic behavior of kinematic variables,
such as constraints on velocity and trajectory smoothness. For
example, Brockwell et al (2007) suggest the a priori random
walk model

Zt =
(

XT
t

ẊT
t

)
=

(
IK×K δ × IK×K

0 IK×K

) (
XT

t−1

ẊT
t−1

)
+

(
0

εt

)
, (7)

where εt , t = 1, 2, . . . , are independent vectors with
mean 0 and K × K variance-covariance matrix �. For
all k = 1, . . . , K , (7) specifies that Ẋkt = Ẋk(t−1) plus
some perturbation εkt , which forces the velocities to change
smoothly over time if the perturbations are taken to be small
enough. Equation (7) also specifies that Xkt = Xk(t−1) plus the
velocity Ẋk(t−1) multiplied by the size of the decoding window,
δ ms. This not only forces the positions to be consistent with
their respective velocities, but also induces the position paths to
be smooth when the velocity paths are smooth. Alternatively,
one can assume the more general random walk model(

XT
t

ẊT
t

)
= B

(
XT

t−1

ẊT
t−1

)
+ εt , (8)

where εt , t = 1, 2, . . . , are independent vectors with mean 0
and 2K × 2K variance–covariance matrix �, and estimate B
and � by maximum likelihood according to

B =
n∑

t=2

ztzT
t−1

(
n∑

t=2

zt−1zT
t−1

)−1

� = 1

n − 1

(
n∑

t=2

ztzT
t − B

n∑
t=2

zt−1zT
t

)
,

as in Wu et al (2004), where zt , t = 1, . . . , n, is a training set
of kinematic data. We describe the specific kinematic models
we used for our data in section 2.5.1, and until then use the
generic notation

Zt = h(Zt−1) + εt . (9)

Once the firing rate and kinematic models are fitted to
data, as described in this and the previous sections, decoding

follows a recursive scheme. Let Zpost
t be the prediction of Z

at time t; Zpost
t is a random variable since the kinematic prior

model in (9) is stochastic, so the actual prediction Z∗
t is usually

taken to be the mean of Zpost
t . Initially Z∗

1 is set to the initial
hind limb state of the encoding dataset. At time (t + 1), we
first use the current prediction Zpost

t together with the kinematic
model in (9) to obtain the a priori distribution of the next value
of Z:

Zprior
(t+1) = h

(
Zpost

t

)
+ εt .

Then we use the observed firing rate vector FRobs
(t+1) at time

(t + 1) with the firing rate models in (5) to update that prior
into the posterior distribution of Zpost

(t+1), and finally take its mean
to be the predicted kinematic state vector Z∗

(t+1). Depending on
the forms of the firing rate and kinematic models, the posterior
calculation is carried out by Kalman or particle filtering; these
methods are described in detail in Brockwell et al (2004); Wu
et al (2006); Brown et al (1998). Here we use particle filtering
because the firing rate model in (5) involves splines. The
resulting trajectories for X are typically smooth enough and
do not require additional smoothing.

2.5.1. Kinematic models. For our data, we assumed the
general random walk model (8) and used a training set of
kinematic data to estimate B. We obtained

B ≈
(

I3×3 0.05 × I3×3

0 I3×3

)
for the three joint angles (A1, A2, A3), and

B ≈
(

I2×2 0.05 × I2×2

0 I2×2

)
for the limb end-point kinematic variables (R, θ), which
are precisely the a priori kinematic models suggested by
Brockwell et al (2007) in equation (7), with our decoding
window of δ = 0.05 ms.

The kinematic model for (A1, A2, A3) can further be
improved by taking into account the physical constraints
between these angles. These constraints are seen in figure
2, which shows a three-dimensional (3D) scatter plot of
(A1, A2, A3) in two movement patterns: a center out path
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Figure 2. Observed trajectories of the three joint angles of the hind limb during random (gray) and a center-out (black) passive movements.
The joint angles are clearly inter-dependent.
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Figure 3. Depiction of the random walk prior model for the joint angles, in 2D rather than 3D to improve visibility. (a) Location of the
current predicted state (×), posterior distribution of the state (small gray circular area, whose relative size represents the relative uncertainty
of the current position) and kinematic data manifold (dark curved gray area). (b) Transformation of the posterior into the intermediate prior
for the next state prediction, based on the kinematic model in (9). (c) Projection of the intermediate prior toward a locally defined plane
representing the shape of the kinematic range of motion.

(black) and a random path (gray). We see that hip and ankle
angles are highly inter-dependent, as was already observed
in Weber et al (2006) and Bosco et al (2000), since the data
lie almost entirely on a 2D manifold. This explains why,
when decoding via reverse regression, neurons that encode
for hip could be used to decode the ankle angle as well, and
vice versa. In all experiments, the limb was made to move
by controlling only its foot position. Therefore, figure 2
displays the relative positions that the three angles assume
naturally during imposed movement of the foot. Moreover,
these natural positions appear consistent across experiments,
since the data from the random and center-out experiments lie
within the same sub-space. It is thus reasonable to assume
that all passive movements share the constraints between joint
angles displayed in figure 2. We could include this prior
information in the kinematic model by forcing the random
walk in (8) to evolve within the envelope of the points in
figure 2. However, this envelope is probably too tight since
we did not observe all possible movements, so we will instead
force the random walk to evolve near, rather than inside, the
envelope, as follows.

Let A∗
t = (A∗

1t , A
∗
2t , A

∗
3t ) be the predicted value of the

joint angles at time t, depicted as × in figure 3(a); as mentioned
earlier, A∗

t is the mean of Apost
t , whose distribution is depicted

as the circular gray area in figure 3(a). We identify the quarter
of the points in figure 2 that are closest to A∗

t , and obtain
the 2D plane spanned by their first two principal components,
depicted as the straight line in figure 3(c); the most natural
limb positions near A∗

t should be close to that plane. To obtain

the prior distribution of A at time (t + 1), we first use the
kinematic model in (9) to transform the posterior distribution
of A at time t into an intermediate prior for A at time (t + 1)

(circular gray area in figure 3(b)), and we orthogonally project
it half the distance toward the principal component plane (see
figure 3(c)). This modified random walk loosely mimics or
‘accommodates’ the natural constraints on the joint angles. In
particular, by using only a quarter of the training data to obtain
the projection plane, we enable the prior model to follow
the curvature of the cloud of points in figure 2. The polar
coordinates appeared to be independent so we did not include
any additional constraints in their kinematic model.

2.6. Decoding efficiency

We assessed the quality of decoded trajectories by the
integrated squared error (ISE), defined as the squared
difference between decoded and actual trajectories, integrated
over all decoded time bins. The ISE is a combined measure of
bias and variance, which typically decreases proportionally
to the inverse of the number of neurons used to decode.
Hence, when comparing two decoding methods, the ISE
has the following interpretation: the accuracy of reverse
regression, based on nRR neurons, will be comparable to the
accuracy of state-space decoding, based on nSS neurons, if
nRR = nSS (ISERR/ISESS). This means that if the ISE ratio
ISERR/ISESS is one, the two methods are equally efficient; if
the ratio is 1.5, reverse regression needs 50% more neurons
to be as efficient as state-space decoding etc. Therefore,
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Figure 4. (A) Kinematic trajectories of the hip and knee angle
during a center-out passive movement. (B) Firing rate of a PA
neuron during passive movement of the hind limb (thick gray
curve). Overlaid are the predicted firing rates using models that
include the position of hip and knee angles (dashed curve) and the
position and velocity components (solid curve).

two decoding methods can be compared by computing the
ratio of their respective ISEs. Because ISE ratios vary from
dataset to dataset in repeated simulations, we summarized their
distributions using violin plots.

Violin plots are closely related to boxplots; both show the
distributions of several variables side by side, and are therefore
particularly well suited to compare these distributions. The
better-known boxplot does not display full distributions, but
only side-by-side summaries in the form of boxes with
edges marking the quartiles. Violin plots do not reduce the
distributions to be compared to a small number of features,
but instead plot the full distributions and their mirror images
vertically. They also include a marker for the medians of the
distributions.

3. Results

The data from two animals are included in the analysis of
this paper. Spike sorting the neural data resulted in 158 and
116 classified neurons for each animal, respectively. From
these 274 neurons, 171 neurons (115 and 56, respectively)
were included in the analysis based on the criteria described
in section 3.1. Section 3.1 describes an analysis of the firing
rate models to give insight into how well each of the various
state variables and their interactions are represented in the
PA ensemble. Analysis of decoded trajectories in joint angle
space and endpoint space are presented in sections 3.2 and 3.3,
respectively.

3.1. Encoding models

In the methods section, we argued that a decoding method that
involves firing rate models would use the data more efficiently
than reverse regression because it can account for the effects
of multiple joint angles and their derivatives. Here, we assess
if such effects are present in our data.
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Figure 5. (A) Summary of the accuracy of firing rate models
comparing position, velocity and the combination of position and
velocity. Models were trained and tested on random-pattern
datasets. (B) Summary of the accuracy of firing models comparing
various kinematic explanatory variables in joint angle space and
endpoint space. Each distribution contains the R2 value of the fitted
trajectories of 162 firing rate models.

Figure 4 shows the observed firing rate response of a
primary muscle spindle during a center-out passive movement
(thick gray curve). We fitted all the models in table 1 to that
neuron and selected the best model by BIC. That model has an
adjusted R2 of 0.82; it includes terms for the hip and knee joint
angles, terms for their respective velocities and interactions
terms between positions and velocities (models 26–27 in
table 1). Figure 4(B) shows that the firing rate predicted by
that model (solid curve) closely follows the observed firing
rate, and provides a particularly good fit to the sharp firing
rate increases that occur when the joint angles shift to different
positions. Figure 4(B) also shows the fit of the best model with
all the velocity terms omitted (dashed curve). The adjusted
R2 dropped to 0.49 and the accuracy of the fit during the rapid
movements degraded markedly. This shows that the PA neuron
used in figure 4 encodes not only for joint angles, but also for
their velocities.

To evaluate the overall importance of the combined
position and velocity models in the population of neurons
for each neuron, we collected the adjusted R2 value of three
models; the best model involving only joint angles, the best
model involving only joint angle velocities and the overall best
model. Figure 5(A) shows the violin plots of the R2 values of
the three types of models. To clarify the plot, we dropped the
neurons which achieved a maximum R2 value less than 0.25,
since they were deemed to encode little kinematic information.
Velocity models outperform position models, which suggests
that a large number of neurons encode information about joint
angle velocity. Figure 5(A) shows that the majority of the
neurons are best modeled by a combination of joint angle
positions and velocities (mean R2 = 0.68 ± 0.12), which
agrees with a previous report on the encoding properties of PA
neurons (Stein et al 2004b).

Next, we assessed which kinematic variables were
represented in the neural population. We considered joint
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Figure 6. Example of hip, knee and ankle joint angle trajectories
decoded with the state-space and reverse regression models. This
result was generated as one of the simulations with 23 randomly
selected neurons. We filtered the decoded trajectory of the reverse
regression post-decoding to to smooth the resultant estimates. The
ISE ratios are displayed for each of the kinematic variables.

angle kinematic variables as well as polar coordinates of the
MTP (i.e. toe position relative to the hip). For each neuron, we
collected the adjusted R2 value of five firing rate models (hip,
hip and knee, knee, knee and ankle and ankle) and three polar
coordinate models (R, θ and R & θ ). Figure 5(B) shows the
violin plots of the R2 distributions where we excluded neurons
which achieved maximum R2 values less than 0.25. Models
that include two joint angles generally outperform models that
include only one. Similarly, including both R and θ increases
the R2 value on average. Note that θ is represented poorly in
the neural population. We can also see that the combination of
R and θ results in R2 values that are on par with the best joint
angle models.

The results displayed in figure 5 suggest that most neurons
encode for a combination of angles, and their velocities. In
fact, after applying the firing rate model selection procedure
outlined in section 2.4.1, we found that 90% of the neurons
have firing rates that are best modeled by models 26–27 in
table 1. This indicates that the firing rates of these neurons
depend on multiple joint angles, on interactions between the
joint angles and on their velocities. The neurons were equally
distributed between hip/knee and knee/ankle neurons. This
makes sense since the neurons were recorded from the L6 and
L7 DRG, which cover the proximal and distal portions of the
hind limb (Aoyagi et al 2003). Similarly, in endpoint space,
over 90% of the best models include R, θ , Ṙ, θ̇ and their
interactions; R : Ṙ and θ : θ̇ .

3.2. Decoding joint angles

To compare different decoding methods, we decoded limb
kinematics using randomly selected groups of neurons.
Performance results are in figure 7. We first show in figure 6
an example where the same 23 randomly selected units were
used to decode the three joint angles using reverse regression
and state-space modeling. In this case it is clear that state-
space decoding is more accurate than reverse regression
decoding. The ISE ratios for the three joint angles are 3.5,

4.3 and 5.4, respectively, which means that to obtain the
same accuracy as the state-space approach, reverse regression
needs approximately four to five times more neurons. The
reverse regression estimates have large errors, particularly
during periods of rapid displacement, which is presumably
due to the lack of velocity integration. State-space decoding
integrates the velocity components of the firing rates and thus
tracks more closely the kinematics trajectories.

We repeated the analysis of joint angle decoding based
on 50 sets of 3, 8, 13, 18, 23 and 28 randomly selected
neurons, for each of two animals. The two passive movement
patterns described in section 2.2 were decoded separately using
each set. The ISE values of the decoded trajectories for the
two animals were combined, resulting in 200 ISE ratios per
decoding method and per data set size. Figure 7 summarizes
these results as a function of the size of the neural population
used for decoding. It shows that our state-space model is
clearly superior to reverse regression, especially in decoding
the knee angle. When using 28 randomly selected neurons,
the median ISE ratio is 1.6, 2.5 and 2.1 for the hip, knee and
ankle angles, respectively. This means that reverse regression
needs approximately twice as many neurons to produce results
as accurate as the state-space approach on average. The
proportionally large increase in accuracy for the knee angle
estimates is probably due to the fact that 96% of the firing
rate models include the knee joint and/or its derivative as one
of the explanatory variables. During decoding, this translated
into a large number of neurons contributing to the prediction
of the knee angle.

Our motivation for using small groups of neurons in
figure 7 is twofold. First, we are interested in comparing
the two decoding methods when only a limited number of
neurons are available for decoding, since it may not always
be possible in practice to collect a large population of neurons
from which a set of good decoding neurons can be extracted.
Second, we need to use groups that are significantly smaller
than the population available, so that the variability observed
across the repeat simulations is comparable to the variability
one would observe in practice; we have only 56 good neurons
from the second animal, so we capped the decoding population
size at 56/2 = 28. Note, however, that when we used more
than 28 neurons for decoding (not shown), the variability of the
decoding efficiency decreased across datasets, so that the violin
plots became very short, which is to be expected since neurons
are drawn from a comparatively small population; however, the
mean decoding improvement of the particle filter remained
constant and similar to using 28 neurons, with median ISE
ratios approximately 1.6, 2.5 and 2.1 for the hip, knee and
ankle angles, respectively.

Finally, it is interesting to note that reverse regression
does a little better on average when very few neurons are
available for decoding (n = 3). However, the actual ISE
values are very high, meaning that neither method performs
well. The relatively superior performance achieved by reverse
regression can be explained by the direct relation between the
decoded trajectory and the constant coefficient in (3): in the
absence of any kinematic information in the neural response,
the decoded trajectory is predicted to be the constant coefficient
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Figure 7. The ISE ratios plotted as a function of the number of neurons that are used for decoding. The distribution of the ratio is plotted for
groups of 3, 8, 13, 18, 23 and 28 neurons. The included data are comprised of decoded trajectories from 50 center-out and 50 random trials
per animal, per distribution. Therefore, each violin plot is based on 200 simulations. Firing rate models were fit to data comprised of a
combination of center-out and random trials. The median of the distribution is indicated with a dot. A ratio greater than 1 favors the
state-space decoding method. A ratio of 2 means that twice the amount of neurons are needed with reverse regression to attain the same
accuracy as the state-space method.

of the regression. In contrast, the state-space method is unable
to produce meaningful predictions since there is insufficient
information in the neural data.

3.3. Decoding endpoint coordinates

The decoding efficiency of polar coordinates of the endpoint
were analyzed in a similar manner. The firing rates were
modeled as functions of R and θ , as described in section 2.4.2.
We found that over 90% of the models included both kinematic
variables, their derivatives and the interaction between the
variable and their derivatives.

Figure 8 shows the efficiency results of decoding in polar
coordinates, based on the same sets of neurons and trajectories
used to produce figure 7. We see that state-space decoding
significantly outperforms reverse regression for R, but does
not show similar improvements for θ . The problem with θ

is that it is poorly encoded by the neurons, as was shown in
figure 5(B). The consequence is that both methods decode θ

poorly. Reverse regression tends to predict a constant for θ ,
so the estimate is biased with low variability, while the state-
space model produced a highly variable estimate due to lack
of information about θ .

As a final remark, note that the trajectories for R and θ

could also be inferred from the trajectories of ankle, knee and
hip angles when the segment lengths between the hip, knee
ankle and MTP marker are known. We found that the reverse
regression trajectories were particularly poor compared to
state-space decoding, presumably because the three angles are
decoded separately so that their prediction errors accumulate.
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Figure 8. The ISE ratios plotted as a function of the number of
neurons that are used for decoding. The distribution of the ratio is
plotted for groups of 3, 8, 13, 18, 23 and 28 neurons. The included
data are comprised of decoded trajectories from 50 center-out and
50 random trials per animal, per distribution.

4. Discussion

This paper addresses the problem of estimating limb state
from the firing rates of an ensemble of PA neurons recorded
simultaneously in the DRG. It is an extension of previous
studies that used linear decoding models to estimate each of
several kinematic variables as a weighted sum of firing rates
in the PA ensemble. In those studies, a reverse regression
approach was taken to build decoding models, which provided
estimates of hind limb motion during both passive (Stein
et al 2004b) and active (Weber et al 2006, 2007) movements.
However, reverse regression has some apparent limitations
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in decoding the activity of PA neurons, motivating a change
to maximum likelihood estimation methods such as state-
space decoding. A comparison between reverse regression
and state-space decoding is provided below. We also discuss
implications of this and related work for developing a neural
interface to provide limb-state feedback for control of FES
systems.

4.1. State-space decoding methods of primary afferent
activity

We showed that state-space decoding performs significantly
better than reverse regression. The main limitation of reverse
regression is that it is based on modeling the variations of
each state variable as functions of neural activity, i.e state =
f (rate), when in reality PA neurons are the truly dependent
variables modulated by one or usually multiple state variables
and their time derivatives (i.e. velocities). The state = f (rate)
representations do not allow such multivariate dependences to
be modeled, with the consequence that the information in the
firing rates cannot be used efficiently. Previously published
results show that reverse regression is capable of producing
decent estimates of limb kinematics with, as few as, five of
the ‘best tuned’ neurons (Weber et al 2007, Stein et al 2004b).
One of the key characteristics of reverse regression that enables
this accuracy is that, despite the use of linear regression, the
firing rates of individual neurons do not necessarily need to be
linearly related to the kinematics. By reversing the actual
dependences, reverse regression merely assumes that each
kinematic variable is a linear combination of the included PA
neuron firing rates.

On the other hand, the state-space framework relies
on modeling the actual dependences on the state variables
that drive the neuron’s firing rate, i.e. rate = f (state).
It accommodates effects such as multivariate dependences
and interactions and thus makes the most efficient use of
information embedded in the firing rate. In this paper,
we modeled the physiological encoding properties of PA
neurons by fitting their firing rates to nonlinear functions of
one or more state variables, and applied model selection to
ensure that the natural encoding properties of each PA neuron
were represented accurately. Previously, Stein et al (2004a)
showed that nonlinear functions could improve the accuracy
of encoding models; a cubic polynomial was used there to
account for regions where the firing rates saturated (i.e. at
firing rates = 0 and the maximum discharge rate). In this
paper, we used non-parametric functions consisting of moving
lines with four non-parametric degrees of freedom to produce
a more general nonlinear fit to the firing rate models.

The state-space approach also involves a probabilistic
model that describes the intrinsic behavior of the state
variables. Standard models typically account for the fact that
realistic state trajectories, e.g., trajectory of the limb, should
be smooth. In this paper, we not only accounted for the
smoothness of trajectories, but also for the apparent inter-
dependences between the state variables in the joint angle
frame (see figure 2). Specifically, we designed a kinematic
model that forces the decoded trajectories to comply with
the observed kinematic constraints. Note that with reverse

regression, the effect of kinematic dependences is that some
neurons are included in multiple state decoding models. For
example, the ankle and hip movements tend to be highly
correlated, and thus neurons that encode primarily for hip
joint angle can also be used to estimate the motion of the
ankle joint. In contrast, the state-space approach maintains
the physiological relationships between the state variables and
the resulting PA firing rates.

We found that including velocity in the firing rate
models improved the overall efficiency of the decoder, and
simultaneous decoding of all kinematic variables resulted
in lower prediction errors than decoding the joint angles
individually. State-space decoding minimized the prediction
error over the complete limb state, whereas reverse regression
minimized it for each variable, i.e. state-space decoding
provided the most likely limb posture given the firing rates and
associated encoding models for a population of PA neurons.
Similarly, Wu et al found that simultaneous decoding of the
full behavioral state vector (i.e. 2D position, velocity and
acceleration for the hand expressed in Cartesian coordinates)
yielded the best performance in decoding neural activity in
primary motor cortex (Wu et al 2006).

Loeb and also Prochazka (Prochazka et al 1976) pioneered
the development of techniques that enabled the first recordings
of muscle spindle activity in awake, behaving animals. Both
groups used microwires implanted chronically in the DRG
to record simultaneously from PA neurons in locomoting
cats. Data from these experiments were useful for developing
computational models for estimating the firing rate of muscle
spindle afferents as a function of muscle length, stretch rate and
fusimotor drive to the spindles (Prochazka and Gorassini 1998,
Mileusnic et al 2006). However, these mechanistic models
of spindle function have not yet been used to decode limb
kinematics from muscle spindle recordings, likely because
the models are nonlinear and difficult to invert. State-space
decoding could be combined with these more physiologically
accurate models to generate estimates of the muscle length
and stretch rate. One more step would be required to
convert the muscle-state estimates into joint angular positions
and velocities, but this would be rather straightforward
given knowledge of musculoskeletal biomechanics, such as
described for the cat hind limb in Goslow et al (1973).

Our last comment concerns the aggregation of information
across neurons. Stein et al (2004b) noted that, with
reverse regression, optimal decoding performance could be
achieved with approximately five ‘best-tuned’ neurons having
the highest correlations with a kinematic variable, and
that including additional neurons that correlate well with
kinematic variables did not necessarily improve the decoding
performance. This means that the performance of reverse
regression is highly dependent on particular neurons, and
that the method fails to incorporate the information provided
by other neurons. This is likely to be an issue in realistic
applications, when a limited set of recorded neurons might
not yield a large enough crop of ‘best-tuned’ neurons. In
contrast, the state-space approach appropriately aggregates
the information contained in all firing rate models via the
likelihood function, and thus makes it possible to obtain
accurate decoding from a non-select set of recorded neurons.
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4.2. Natural feedback for FES control

Microelectrode recordings of PA activity can be used to
provide feedback for controlling FES-enabled movements.
Yoshida and Horch (1996) recorded muscle spindle activity
in the tibialis anterior and lateral gastrocnemius muscles
in response to ankle extensions generated by stimulating
the medial gastrocnemius muscle with a longitudinal
intrafascicular electrode (LIFE) in the tibial nerve. Ankle
joint angle estimates from the decoded LIFE recordings
were used as feedback for a FES controller programmed to
reach and maintain a range of fixed and time-varying joint
position targets (Yoshida and Horch 1996). Another study
used the Utah Slant Electrode Array (USEA) to establish a
peripheral nerve interface for both stimulating and recording
activity in motor and sensory fibers in the sciatic nerve of
anesthetized cats (Branner et al 2004). This technology was
advanced recently by incorporating a telemetry chip into the
array assembly to create a fully implantable, wireless neural
interface capable of recording and transmitting 100 channels
of unit activity (i.e. spike-threshold crossings) from peripheral
nerve or cerebral cortex (Harrison et al 2008). Thus, the
technology for establishing high-bandwidth neural interfaces
with motor and sensory nerves is advancing rapidly and holds
great promise for FES applications, as well as basic research.

To be suitable in a medical device application, the
neural interface must remain viable and stable for several
years, longevity that has yet to be demonstrated with any
microelectrode interface in peripheral nerves. To date, long-
term recording stability with penetrating microelectrode arrays
in either peripheral nerves or DRG has not been demonstrated,
and more work is needed to establish reliable, long-lasting
neural interfaces (Weber et al 2006, Rousche and Normann
1998). An alternative to penetrating microelectrodes is to use
nerve cuff electrodes, which measure the combined activity
of many nerve fibers passing through the cuff. However,
attempts at providing graded measurements of limb-state
(e.g. ground reaction force or joint position) with nerve cuff
recordings have had limited success (Jensen et al 2001). In
general, research toward the use of nerve cuff recordings
for continuous joint-angle estimation has been limited to a
single isolated joint, typically the ankle, and tested only
in anesthetized animals (Cavallaro et al 2003, Jensen et al
2001, 2002, Micera et al 2001). Cavallaro et al (2003)
sought to improve continuous state estimation from nerve
cuff recordings and tested several advanced signal processing
methods, but reported difficulty in achieving generalization,
especially for movements with large joint angular excursions.
However, newer nerve cuff electrode designs such as the flat
intrafascicular nerve electrode (FINE) contain a higher density
of electrodes and are designed to reshape the nerve to improve
alignment and access to central fascicles (Leventhal and
Durand 2003). Finite element modeling studies have shown
that FINE electrodes may be capable of resolving compound
nerve activity within individual fascicles using beam-forming
techniques, an approach that may greatly increase the quality
of information that can be extracted from nerve cuff recordings
(Durand et al 2008).

As further improvements toward chronically stable neural
interfaces proceed, focus will shift toward interpreting the
recorded signals. Advanced decoding methods, such as the
state-space decoder discussed here, will enable us to extract
meaningful information from PA firing rates and take us a
step closer to incorporating afferent feedback in closed loop
neuroprostheses.

5. Conclusions

The results of the present study and those reviewed above
demonstrate the potential for using PA neuronal activity
to generate estimates of limb-state, which would be useful
feedback for controlling FES systems. Using state-space
decoding is a principled and accurate method for decoding
kinematics based on population recordings of PA neurons in
the DRG. Because of its ability to efficiently use all neural
responses to predict limb state, fewer neurons are needed to
attain a similar accuracy as reverse regression, and multijoint
dependences are correctly incorporated in the neural models.
The resulting accuracy of decoding these ensembles of PA
neurons provides significant information about limb state and
is well suited for incorporation in a neural interface. However,
the stability and reliability of the neural interface needs to
be addressed before these decoding efforts can successfully
be used to provide limb-state feedback for controlling neural
prostheses.
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Appendix A. State-space algorithm for decoding
limb state

The state-space model applied in this work is an extension
of the particle filter described in Brockwell et al (2004). A
thorough explanation of the particle filter can be found in the
appendix of that work. In this appendix we summarize the
procedure and indicate where our method diverges from the
algorithm in Brockwell et al.

The objective of state-space decoding is to estimate the
state of the hind limb, X = (Xk, k = 1, . . . , K), based on the
input firing rates of I neurons, FR = (FRi, i = 1, . . . , I ). It
relies on an iterative algorithm which updates the posterior
distribution of limb state (and therefore the mean of that
posterior, which is used as the estimate of limb state) as
new observations of spike counts/firing rates arrive. A
Kalman filter calculates that posterior distribution analytically,
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a particle filter by simulation. In this paper, we used a
particle filter with m = 3000 particles to approximate the
posterior distribution, which means that a histogram of the m
particles approximates that posterior. Below we explain how
to update the particle cloud, and thus the limb-state posterior
distribution, at each time step.

(i) Initial prior distribution for the limb state: we have
no information about limb state when we start the
algorithm, so we generate the m initial particles x̃

(j)

0 , j =
1, 2, . . . , m, from a prior distribution that has mean at
the center of the limb-state space, and a large variance to
reflect the lack of information about limb state. This prior
can be adjusted if there is prior information about the limb
state.
Set t = 1.

(ii) Let x̃
(j)

t−1, j = 1, 2, . . . , m, denote the particle cloud at
time t − 1, and ẑt−1 the limb-state prediction at t − 1. To
obtain the limb-state prediction at time t, we first collect
the vector of observed firing rates FRobs

t .

(iii) We advance all particles x̃
(j)

t−1 by simulating the state
model one step forward as per (9). The resulting particles,
x

prior(j)
t say, estimate the prior distribution of the kinematic

state at time t. Equation (9) simply consists of adding
Gaussian random noise to all the particles, with aim to
increase the spread of the particle cloud so that it can
envelop all possible limb states at t, given the current
state ẑt−1. Adding too much noise results in particles
being able to capture highly unlikely limb states, while
adding too little prevents the algorithm from tracking fast
movements. To avoid making an arbitrary decision, we
estimated the variance–covariance matrix of the random
noise from training data, as described in section 2.5.

(iv) The next step is specific to the kinematic model used
in this paper for the joint angles: project each particle
x

prior(j)
t toward the physiologically plausible kinematic

space. To do that, we determine the quarter of the points
in the training data set that are closest to the current
state estimate ẑt−1, and express the coordinates of each
particle as a linear combination of the three principal
components spanning that quarter data. The first two
PCs span a local approximation of the 2D plane of the
physiologically plausible kinematic space, while the third
PC is the orthogonal distance from that plane to the
predicted state variable. Hence, to project the particle
x

prior(j)
t toward the physiologically plausible space, we

simply scale the third PC by ζ ∈ [0, 1]. This operation
reduces by a factor of ζ the orthogonal distance of each
particle to the kinematic plane.

(v) We compute a weight w
(j)
t for each particle as

w
(j)
t = p

(
FRobs

t

∣∣ xt = x
prior(j)
t

)
, (A.1)

which is the probability of observing the firing rate vector
FRobs

t if the kinematic variable takes value x
prior(j)
t . In

this paper, we assumed that each firing rate FRi has a
Gaussian distribution with mean ĝi(Z) and variance s2

i ,
both estimated in the encoding stage (6), and we assumed

that the neurons were independent, so that the weights
reduce to

w
(j)
t =

I∏
i=1

1√
2πs2

i

× exp

(
−

(
FRit − ĝi

(
x

prior(j)
t , ẋ

prior(j)
t

))2

2s2
i

)
. (A.2)

Then we normalize the weights w
(j)
t so they sum to 1.

(vi) We create the new particle cloud by sampling the
current prior particles x

prior(j)
t with weights w

(j)
t and with

replacement. Hence, particles that have low weights are
unlikely to be sampled, while particles that have high
weights might be sampled several times. We call the new
particles x̂

(j)
t , j = 1, 2, . . . , m. This new particle cloud

estimates the posterior distribution of the limb at time t.
We take the estimate of the limb state at time t to be the
sample mean of the particles,

ẑt = 1

m

m∑
j=1

x̂
(j)

i . (A.3)

(vii) Set t to t + 1 and go back to step (ii).

In summary, the estimate of the limb state evolves over
time as new observations of the firing rates arrive. The estimate
at t depends on the state estimate at the previous time point
t − 1 and on the observed firing rates at time t. Since the
limb state can only exist within a confined region of the space
spanned by the kinematic inputs, we constrain the kinematic
model to evolve close to that space.

Appendix B. Details for solving equation (6)

When the firing rates are not modulated by the velocities, so
that the gis are functions only of X, solving (6) amounts to
performing standard least square estimation when the gis are
linear functions of their inputs. Indeed in that case, (6) reduces
to

FRobs
it = β̂0i +

K∑
k=1

β̂kiX
∗
kt + εit, i = 1, . . . , I,

where the εit are independent Gaussian random variables with
mean 0, and the β̂ki are known: they were estimated in the
encoding stage. Therefore (6) is a linear regression model
where the dependent variables are the FRobs

it , the role of the
dependent variables are played by the β̂ki , and the parameters
to be estimated are the X∗

kt . This regression can be fitted
using any statistical software. Equation (6) can still be solved,
although not quite as trivially, if the gi functions are nonlinear
or involve derivatives of X.
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