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Determining the variations in response latency of one or several neurons
to a stimulus is of interest in different contexts. Two common problems
concern correlating latency with a particular behavior, for example, the
reaction time to a stimulus, and adjusting tools for detecting synchro-
nization between two neurons. We use two such problems to illustrate
the latency testing and estimation methods developed in this article. Our
test for latencies is a formal statistical test that produces a p-value. It is ap-
plicable for Poisson and non-Poisson spike trains via use of the bootstrap.
Our estimation method is model free, it is fast and easy to implement, and
its performance compares favorably to other methods currently available.

1 Introduction

It is often of interest to determine the response latencies of one or more neu-
rons to repeated presentations of a stimulus. One may be interested in ad-
justing synchronization tools, most commonly the cross-correlogram (CC)
and joint peristimulus time histogram (JPSTH), for trial-to-trial effects such
as excitability and latency effects (Brody, 1999a, 1999b; Baker & Gerstein,
2001). Another application consists of correlating neural response latency
to a particular behavioral variable such as reaction time, as for example,
in Everling, Dorris, and Munoz (1998), Everling, Dorris, Klein, and Munoz
(1999), Everling and Munoz (2000), Hanes and Schall (1996), and Horwitz
and Newsome (2001). We illustrate both applications in section 5.
Methods to estimate latencies are also varied. For example, Brody (1999b)
estimates latencies based on minimizing the peak of the CC shuffle correc-
tor, although he cautions that his estimates are flawed when latencies are
not, in fact, present. Baker and Gerstein (2001) rectify this problem by pro-
viding three alternative estimation methods, all based on detecting the time
at which the firing rate increases from the baseline, which we refer to as
change-point methods. Two of their estimates possess good properties but
are computationally expensive, and depend on an assumed model for the
spike trains. Baker and Gerstein (2001) also provide a diagnostic that indi-
cates whether excitability and latency effects may be present, although no

Neural Computation 16, 2323-2349 (2004) (© 2004 Massachusetts Institute of Technology



2324 V. Ventura

measure of significance, for example, a p-value, is given for this diagnos-
tic. Latency estimation methods have also been developed for continuous
response waveforms like electroencephalograms rather than for point pro-
cesses, although perhaps they could be applied successfully to smoothed
spike trains. For example, Woody (1967) takes the latency of a waveform on
a particular trial to be the shift that maximizes the correlation between the
shifted waveform and a template. In the statistical literature, Pham, Mocks,
Kohler, and Gasser (1987) develop a change-point method for continuous
signals based on a maximum likelihood paradigm that involves some mod-
eling assumptions and substantial machinery.

In section 2, we describe a method to estimate latencies, which, like the
method of Woody (1967), uses the whole duration of the response of the
neuron rather than just the time at which the firing rate increases from
baseline, as do change-point methods. It compares well to existing methods
in terms of efficiency and computational simplicity. Specifically, our esti-
mates require only calculations of sample means so that they are simple
and very fast to obtain, do not require any model assumptions, and have
smaller biases and variances than other available methods, based on a va-
riety of simulated data, as shown in section 3. Section 4 concerns statistical
inferences about latencies. Because estimating nonexistent effects typically
adds random noise to statistical procedures, we first propose a formal sta-
tistical test for latency effects; by “formal,” we mean that we provide not
only a diagnostic test but also a p-value. We also explain how variances
can be calculated for the latency estimates. The methods of this section are
straightforward for Poisson spike trains but require a more careful treat-
ment otherwise, which is why we deferred its treatment to the end of the
article. Finally, we validate our methods based on two real applications in
section 5 and conclude in section 6.

2 Latency Estimation

The methods developed in this letter rely on a simple result: the spike times
of a Poisson process with firing rate A(t) can be viewed as a random sample
from a distribution with density proportional to A(t). Although this result
applies to Poisson spike trains only, we show that our estimation method
applies generally.

Say that K trials of a neuron were recorded under identical repeated
presentations of a particular stimulus or experiment. Let A(t) denote the
time-varying firing rate of the neuron. If 7; > 0 denotes the latency of trial
k and if we assume that the only effect of a latency is to delay the onset of
the response to the stimulus by 7, then the firing rate of trial k is A(t — 7);
hence, its spike times can be considered a random sample with distribution
proportional to A(t — 7). Therefore, assuming that there is no source of vari-
ability between trials other than latency effects and the random variability
associated with the spike generation mechanism, the spike times combined
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over all K trials can be viewed as a random sample with distribution pro-
portional to

K
D At - o). .1)
k=1

The mixture distribution 2.1 has the same “shape” as the peristimulus time
histogram (PSTH) of the observed trials.

We take our estimates of 11, ..., 7 to be the values that minimize the
variance V(z) of equation 2.1 with respect to t = (1, ..., 1), that s,
K
(f1,..., k) = argminV(z), V(z) = var (Z At — rk)) . (2.2)
k=1

To make an analogy from probability densities back to spike trains, this
criterion finds the set of latency shifts that make the PSTH the narrowest
and therefore the highest.

Note that adding the same arbitrary constant 7y to all latencies shifts the
PSTH of the spike trains by 7o, but does not change its shape, which suggests
that equation 2.2 will produce latency estimates that are defined relative to
one another. However, latency estimates are often used to calculate cor-
relations, for example, with a behavioral variable, which are invariant to
a constant shift in either or both variables. In particular, only the relative
times between two neuron spikes are needed to calculate their CC.

We first select a time window [T7, T>], which includes the period of re-
sponse of the neuron to the stimulus on all trials. We divide [T7, T>] into
small enough bins so that at most one spike falls into any bin on each trial;
these intervals are centered at times #;. Let ny; = 0 or ng; = 1 record the
absence or presence of a spike at time ¢ for spike train k. Letting 7; denote
the true latency for trial k, the variance to be minimized with respect to all
T is

V(z) = E2(2) — EX(v),

where E1(z) and E»(z) are the first two moments of the distribution of all
trials combined, given in equation 2.1. Specifically,

Ei(r) = %Zthj (l’j — ‘L'k) = %Z (Ek — ‘L'k) , (2.3)
P x

and

1
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where hy; = nyj/ny. are the ny; standardized by the total number of spikes,
Ny, = Zj 1y, for trial k, and b= Zj hyjtj. Setting 9V (z)/d7; to zero gives, for
i=1,...,K,

T — K1 Z T = l?,' — K1 Z Ek, (2.5)
k k

with solutions of the form
fr=H—19, forallk=1,... K, (2.6)

for an arbitrary 7g. That is, the latency estimate for trial k is the sample mean
f of the spike times that occurred between T1 and T, shifted by an arbitrary
amount 1. The latencies are relative rather than absolute, since 7y can take
any value. Should absolute latencies be needed, all we need is the absolute
time position T so that T+ 7x become the absolute latencies; this is illustrated
in section 2.1.

Because latency estimates are sample means, smoothing the spike trains
first does not affect the latency estimates, but it reduces their variability
(see section 3). The benefits of smoothing neural data are discussed more
generally in Kass, Ventura, and Cai (2003). We used a kernel smoother so
that if ng=1lor0 denotes the presence or absence of a spike at time ti, the
smoothed spike train has values

ti—t
ny = (Ty =T 0! aniK< d . f), (2.7)
1

where the summation is over all the time bins in [T1, T>], K(-) is the stan-
dard normal kernel, and # is the bandwidth, which controls the amount of
smoothness. To estimate the latencies from smoothed spike trains, we ap-
ply our estimation procedure with J; in equations 2.3 and 2.4 replaced by
h;;{ = n,fj/n;_, where 1, = Zj n}tj.

Before we illustrate this procedure, recall that it is based on the fact that
the spike times of a Poisson process can be considered a random sample
with distribution proportional to the firing rate A(t). However, because the
resulting latency estimates are the sample means of the spike times, the
method is also valid for non-Poisson spike trains, since the center of mass of a
distribution can be estimated consistently from either a random (Poisson) or
a correlated (non-Poisson) sample from A(t); this is illustrated in sections 2.1
and 3. What the distribution of the spike trains has an effect on are second-
order properties such as variances of estimates, confidence intervals, and
statistical tests of hypotheses (see section 4).

2.1 Implementation and Illustration. There are several options to im-
plement the estimation procedure. For example, one can slide a window of
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length T, — T7 along each trial until the sample spike times in the moving
window match across trials, or one can fix the estimation window [T4, T7]
and calculate the mean spike times for each trial in that window. We imple-
mented the latter.

We calculate equation 2.6, shift the trials, and iterate. Indeed, even though
equation 2.5 is deterministic, V(z) and its derivatives use spikes in the fixed
time window [T7, T]; therefore, once the trials have been shifted, a not
exclusively different set of spikes contributes to thenew V(z) and thus yields
new latencies; we use them to adjust the previous estimates. Convergence is
achieved when the latency adjustments are negligible, or when the decrease
in variance V(z) in equation 2.2 is smaller than some ¢ > 0. The second
criterion is easier to implement since it requires monitoring of only one
quantity, and we declare that convergence is reached when the change in
V(z) is smaller than 1% of V(1) for three successive iterations.

To illustrate the procedure, we simulated K = 500 gamma(8) spike trains
with firing rate shown in the middle top panel of Figure 2, with a 20 Hz
baseline and a 60 Hz stimulus induced rate, then shifted the trials according
to latencies sampled from a uniform distribution on [400, 1000] msec. (More
details about simulated samples are provided in section 3.) The top center
panel of Figure 1 shows a raster plot of the first 30 spike trains, and the top
left panel shows the PSTH of all K = 500 trials, with the underlying firing
rate superimposed; the effect of the latencies can clearly be seen. The top
right panel plots the true versus the estimated latencies obtained from the
first iteration of the algorithm; both sets of latencies are recentered around
zero to compare relative rather than absolute latencies. The successive rows
of panels show the result of the successive iterations, with raster plots and
PSTHs based on the spike trains reshifted according to the current latency
estimates. The algorithm converged after seven iterations.

We used 19 = min(f) in equation 2.6 to ensure that [T1, T>] contains the
response of the neuron to the stimulus even after the trials are shifted. With
that choice, the trial with the smallest estimated latency is not shifted, while
the other trials get shifted to align with it, as seen in Figure 1. Hence, to
transform relative latencies 7 into absolute latencies T + 7, we take T to be
the time of onset of response to stimulus based on the PSTH of the shifted
trials; T can thus be determined by any change-point method or simply
by the naked eye. The resulting estimate of T will be accurate since it is
based on a PSTH rather than on a single spike train. In Figure 1, the smallest
true latency was 1o = 418.17 msec, while we obtained T = 418.54 msec by
clicking on a computer plot of the PSTH of the shifted trials.

2.2 Simultaneously Recorded Neurons. Assume that N neurons are
recorded simultaneously and that the same latency applies to all neurons
in a particular trial, up to a constant, so that the latency for neuron i in trial
kiste+B;,i=1,...,N,k=1,..., K. Our estimation procedure applies as
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Figure1: Iterations for latency estimation. Successive rows of panels correspond
tosuccessive iterations, until convergence. The data consist of K = 500 trials with
rate shown in the right panels and latencies uniformly distributed on [400, 1000]
msec. The first column shows the PSTHs of the trials shifted by the current
latency estimates, and the second column the corresponding rasters; only the
first 30 trials were plotted for visibility. The last column shows the centered
estimated latencies versus the centered true latencies. The straight line is the
first diagonal; the number in the upper left corner is the current value of V()
in equation 2.2. We did not show iterations 4-6, but recorded the successive
values of V(z) in the bottom right panel.
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before, but with hk]- in equations 2.3 and 2.4 replaced by N -1 Zlﬁ 1 hfq., where
hgq. = nf{]. / nf{_, and n;q. = 1 or 0 indicates the presence or absence of a spike at

time ¢; in trial k for neuron /. Basically, all this does is combine the spikes of
all N neurons for each trial into a “combined” spike train, with rate

N
A=Y Mt - B,
=1

where A!(#) is the rate of neuron I. This is illustrated in section 5.2 to adjust
a CC for latency effects.

3 Procedure Performance and Limitations

In this section, we investigate more fully the properties of our estimates.
We assess the effects of the firing rate A(f) and the number of trials K. We
illustrate that gains in efficiency can be obtained from smoothing the spike
trains and discuss briefly how to choose the estimation window [T7, T>].
We also show that the latency estimation procedure can readily be applied
to spike trains with simple constant excitability covariations in addition to
latency effects, but illustrate how more complex excitability effects can bias
the estimates.
We measure the efficiency of the estimates using

X 1/2
MSE = (K‘l Dl —2) — (w - r.)]2> 7 @.1)
k=1

where 7, and 7 are true and estimated latencies for trial k, and 7, and 7,
are their respective means. True and estimated latencies are recentered at
zero to compare relative rather than absolute latencies. Equation 3.1 is the
square root of what is known in statistics as the mean squared error (MSE);
it is a combined measure of bias and variance.

To assess the effect of the firing rate, we use the three rates shown in
Figure 2 for a variety of baseline and response to stimulus rates; they are
referred to as the step(a, b), block(a, b), and transient(a, b) rates, where 2 and
b are the values of the baseline and of the maximum firing rates. As in Baker
and Gerstein (2001), a ranges from 10 to 50 Hz in steps of 10 Hz, and b is two
to five times g4, in steps of one. For block and transient rates, the duration of
the response is 1000 msec, after which the rate returns to baseline. Finally,
the latencies are uniformly distributed on [400, 1000] msec. Although Baker
and Gerstein used only the step rate, the performances of their estimators
also apply to the block rate because they are based on change-point methods.
Baker and Gerstein did not consider a transient rate, for which the departure
from baseline is perhaps harder to detect.
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Figure 2: MSE (3.1) of the latency estimates. (A,B,C): Methods in Baker and
Gerstein (2001). (All other panels) Proposed method. (K) MSE (3.1) as a function
of T; and T»; lighter shades denote lower MSE. (J) Bias for all simulations in
D-F. All panels but G and H use 500 gamma(8) spike trains with rate indicated
in the title. G uses 500 Poisson spike trains. On most panels, the baseline a is on
the x-axis, and the maximum rate is b = k - a, where k is the plotting symbol.
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We use two types of spike generating mechanisms, Poisson and gamma
spike trains of order 4 = 8, the latter to match the simulation results in
Baker and Gerstein (2001). The former generates spikes independent of the
past, while the latter can be used to model spike trains where refractory pe-
riod effects are present. Recall, however, that our estimation method works
generally.

Figure 2D through 2F show equation 3.1, based on K = 500 gamma(8)
spikes with step, block, and transient rates, from which we conclude that
the type of firing rate does have some impact on efficiency. In particular,
our method is more effective for firing rates that return to baseline than for
sustained rates. Figures 2D and 2E are directly comparable to Figures 2F, 3G,
and 4G in Baker and Gerstein (2001), which we reproduced for convenience
in Figures 2A through 2C. Figure 2H shows that the efficiency does not
depend on the number of trials.

Baker and Gerstein (2001) used the mean of the errors [Ty — 7¢] as a mea-
sure of the tendency to consistently over- or underestimate the latencies;
their methods in Figures 2A through 2C produced biases as large as, in ab-
solute value, 20, 30, and 70, respectively. The equivalent measure for our
relative latencies is the mean of [(Tx — 7o) — (7x — 7.)], which is always zero.
We therefore used the median of these errors as our measure of bias, which
we plotted in Figure 2]. The bias is close to zero, which suggests that our es-
timates are randomly scattered around the true relative latencies, as could
be seen in Figure 1. We discuss conditions under which estimates can be
biased in section 3.1.

Figure 2G suggests that latencies based on Poisson spike trains are less
accurate than latencies based on gamma(8) spike trains with the same rate
in Figure 2D. This is not surprising since there is more variability in Pois-
son than in gamma(8) spike times. We discuss further the variances of the
estimates in section 4.

Figure 2L shows equation 3.1 as a function of the bandwidth % in equa-
tion 2.7 used to smooth the spike trains. It is clear that some efficiency can
be gained from smoothing, but that the gain is fairly insensitive to 1. How-
ever, our experience suggests that convergence is most easily assessed with
smaller bandwidths. In the rest of this article, we used i = 200 msec.

The efficiencies in Figure 2 all used [T1, T2] = [200, 2200] msec. They
can be improved by finer choices of T1 and T. The gray scale in Figure 2K
shows equation 3.1, averaged over 1000 simulated data sets, as a function
of T1 € [—100, 1000] msec and T, € [1300, 3600] msec. We used gamma(8)
data with block(30,60) rate; results are qualitatively similar for other spike
trains. True latencies are uniform on [400, 1000] msec, so that, based on
the PSTH, the response to stimulus starts around 400 msec and reaches
its peak around 1000 msec, which is indicated by white vertical lines. The
response begins to decline around 1400 msec and returns to baseline around
2000 msec, which is indicated by horizontal white lines. It is clear that our
procedure is sensitive to T7 and T>. A good choice for T is just before the
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firing rate begins to depart from baseline (based on the PSTH). For sustained
responses to stimuli (step rate, not shown), we found that the efficiency
of our method is not sensitive to the particular choice of T, whereas for
nonsustained rates (block or transient), a good choice for T is such that
the length of [Ty, T>] is roughly equal to the duration of the response to the
stimulus. Finally, even with optimal choices of T1 and T», the efficiencies of
the latency estimates are comparable for block and transient rates but not as
good for the step or sustained rate, which we observed already in Figures 2D
through 2F.

3.1 Limitations. Our latency estimation is based on the assumption that
the firing rate is identical across trials except for a time shift. In many con-
texts, however, the conditions of the experiment or the subject may vary
across repeated trials enough to produce discernible trial-to-trial spike train
variation beyond that predicted by Poisson or other point processes. We il-
lustrate the consequences of such effects on our latency estimates.

Assume that the state of the neuron varies slowly so that the firing rate
of trial k is

oAt — 1) (3.2)

rather than A(f — 1), where «y is some positive constant; that is, the firing
rate is inflated or deflated by a multiplicative gain oy on each trial, as pic-
tured in Figure 3A. Because the «j are constants, firing rates o A(t — 7¢) and
A(t — ) are proportional to the same density; hence, they have the same
means and thus produce the same estimates of latency. What differs is the
number of spike times used for estimation, which affects the variance of
the means rather than their average values (see section 4). Figure 2I shows
the efficiency of the latency estimates for 500 gamma(8) spike trains with
rate 3.2, o uniformly distributed on [0.5, 1.5], 7 uniformly distributed on
[400, 1000], and A(t) the transient rate. Figure 2F uses spike trains that are
in every way similar but for excitability covariations. We picked the oy in
equation 3.2 so that the total number of spikes across the K trials are compa-
rable for Figures 2F and 2I. This explains why the efficiencies are also fairly
comparable.

In practice, excitability effects will likely be more complex than equa-
tion 3.2, and depending on the degree of deviation from it, the latency
estimates will be biased. A partial solution that sacrifices some efficiency is
to reduce the estimation window [T, T2] so that the excitability effects are
approximately constant on that window.

This is illustrated in Figure 3, based on gamma(8) spike trains with firing
rate for trial k,

Skt — ) At — ),
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Figure 3: Excitability effects. (A) Firing rates for four trials with multiplicative
excitability effects (see equation 3.2). (B) Firing rates for five trials with complex
excitability effects. (C) Raster plot for 50 trials with complex excitability effects.
(D) True versus estimated latencies for several values of T,. The first row of
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in B.
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with A(t) the transient(20,120) rate and 7, uniformly distributed on [400, 600]
msec. We generated excitability effects using

k() = {aok + arx - hi(t, i) H1 + ¢k - aox - ha(t, par)},

where ag, a1x and ay are gain coefficients that are normally distributed with
respective means and variances 0.8 and 0.22,0.4 and 0.12, and 1 and 0.5%,
and ¢, is a Bernoulli random variable with Pr(cy = 1) = Pr(c; = 0) = 0.5.
The time component h, (t, uox) is a normal density with standard deviation
200 and mean py; that we take to be normally distributed with mean 1700
and variance 150%; h; adds a later component to the neural response at a
random time, for 50% of the trials. The other time component hy (¢, p1x) is
a gamma density function that takes nonzero values when t > w1, where
w1x = 1800 — 27, depends on the latencys; it inflates and lengthens the first
peak of the firing rate by random amounts. Figure 3B shows five fairly
extreme firing rates from this model, all with latencies 7, = 400 msec, while
Figure 3C shows 50 typical spike trains generated from the model with
latencies uniformly distributed on [400, 600] msec.

The estimated latencies from 500 such spike trains are plotted against the
true latencies in the bottom panels of Figure 3D, where it is clear that the
estimates become severely biased as T> becomes larger. For comparison, the
top panels in Figure 3D are the corresponding plots from spike trains shown
in Figure 3A, with multiplicative excitability effects (see equation 3.2). For
T, smaller than 1300 msec, latency estimates from trials with either type of
excitability effects are comparable.

If excitability effects are so extreme that the firing rate does not have a
common component across trials, a change-point latency estimation method
may be more efficient.

4 Inference for Latencies

Typical consequences of estimating nonexistent effects on subsequent sta-
tistical procedures are loss of statistical power and efficiency. It is therefore
important to test if response latencies are constant across trials. We illustrate
this below for simulated data, and in section 5 for real data. We also provide
standard deviations for the latencies.

To carry out a statistical test, we must choose a test statistic T, determine
its distribution under the null hypothesis Hy that the response latency is
constant, which we refer to as the “null distribution of the test statistic,”
and finally compare this distribution to the observed value fy; of the test
statistic, typically via the p-value, to determine if the null hypothesis should
be rejected.

Choosing a test statistic is most easily done if we consider once more the
analogy between firing rates and distributions. The spike times of trial k
can be viewed as a sample from a distribution proportional to A(f — tx). Let
wx denote its true mean, with estimate the sample mean f, in equation 2.6.
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Then the null hypothesis Hy that all latencies are equal is equivalent to the
assumption of equal means in different samples, Ho: 1 = -+ = pux =
--- = g, which is routinely dealt with an ANOVA F-test. The ANOVA test
statistic is

=K et — )2/ (K= 1)

F= K n n ’
pI Zj:kl (tkj — t)?/(m. — K)

(4.1)

where ti, j =1,... are the spike times of trial k, t is their mean, f. is the
sample mean of the spike times across all K trials, 7y is the number of spikes
in trial k, and 7 is the number of spikes across all K trials.

Large values of F provide evidence against the null hypothesis of constant
latency; thus, the p-value is

p = Pr(F > fos | Ho true), 4.2)

where fy,s denotes the observed value of equation 4.1 in the sample, and
“| Hp true” means that the probability is calculated with respect to the null
distribution of F. It is commonly assumed that under Hp, the ANOVA F-
statistic has a Fisher F-distribution with K and m. degrees of freedoms, and
it is common practice to reject Hy when equation 4.2 is smaller than 5%, or
1%. This null distribution involves assumptions that we come back to later
in this section.

Whatever the outcome of the global test above, it may be of interest to test
the latency of a particular trial against a value fg or to compare the latencies
of any two trials. This can be dealt with in one-sample and two-sample ¢-
tests, respectively; note that a two-sample t-test is equivalent to the F-test
(see equation 4.1) applied to K = 2 trials. In this article, we consider only
the tests of every pair of trials, since choosing a particular point fo seems
arbitrary; moreover, it seems more relevant to test if particular trials have
latencies that differ from those of the other trials, as illustrated in section 5.
We report the p-values of all two sample t-tests in a K x K matrix, where K
is the number of trials.

Animportant point is that the simple excitability effects (see equation 3.2)
donotaffecteither test, because an overall inflated or deflated rate o A (f— 1)
does normalize to the same distribution as the rate A(f — 7). What happens
is that excitability becomes a sample size effect that is seamlessly taken care
of by the test statistic F via the spike counts r; in equation 4.1. Of course it is
unlikely that excitability effects will be exactly of the simple form of equa-
tion 3.2, but they may be sufficiently well approximated by that equation on
a small testing window [T7, T2]. Section 5.2 presents an application where
excitability effects are present, yet our testing and estimation procedures
appear to work well.

Global and pairwise tests are illustrated in Figure 4A. We simulated 100
Poisson trials with block(20, 60) rate, latency 400 msec for the first 50 trials,
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and 700 msec for the other 50 trials. This shows clearly on the raster plot. The
p-value (see equation 4.2) for the global test is less than 0.00001, suggesting
thatlatencies are variable across trials. The right-most panel shows the K x K
matrix of the p-values of the pairwise tests, with white, gray, and black
cells corresponding to p-values smaller than 1% (strong evidence that the
latencies are different), between 1 and 5% (evidence), and above 5% (no
evidence), respectively. The two mostly black areas of the matrix correspond
to pairs of trials that belong to the same latency group. These areas are not
perfectly black because if a denotes the significance level of the test, that is,
the probability of erroneously rejecting a true null hypothesis, we should
expect to reject approximately a proportion « of tests that have Hy true. We
indeed verified that the proportion of false-positive results (white and gray
pixels in the two mostly black areas of the matrix) is just about 5% and the
proportion of white pixels about 1%.

The test appears to lack power, since many pairs of latencies that are
different are not discovered, as indicated by the dark pixels (P > 5%) in the
mostly white areas of the matrix. However, given a fixed testing window
[T1, T>], the ANOVA F-test is in fact known to be the most powerful test; the
power happens to be low in this example because the firing rate is low, which
yields small sample sizes, and Poisson trials are quite variable. Figure 4B
shows that the same test applied to gamma(8) spike trains with the same
rate is more powerful (see section 4.2).

To determine the optimal testing window, we conducted a simulation
study similar to that in section 2. The power for the global test was estimated
by the proportion of significant tests applied to 1000 simulated samples that
have latency effects. We found that the power was sensitive to the testing
window and that for all rate types, a good choice for T is just before the
firing rate begins to depart from the baseline, and for T, approximately
when the response to stimulus ends, based on the PSTH of the unshifted
trials.

Figure 4A also shows 95% confidence intervals for 7 obtained as follows.
Our estimates 7 are sample means, so the central limit theorem applies to
give

2 ~ N(t, o7); (4.3)
that s, 7y is approximately normally distributed with mean the true relative

latency 1%, and variance okz. Hence, a 95% confidence interval for the true 7
is

.+
T — 20%. (4.4)

To estimate o for each trial, we consider once more the spike times to be
a random sample from a density proportional to the firing rate. Therefore,
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with 1 the number of spikes in [Ty, T5] for trial k, the estimated variance of
Tk is

52 >t — B)?
N k J\K]
Ukz - n_k ) S]% == T ) (4'5)

where f and S? are the usual sample mean and sample variance of the spike
times fy.

The methods proposed in this section so far are fast and straightforward.
However, the F-test, t-tests, and confidence intervals’ results hold only if the
spike times are a random sample from A (t — ) and if A(t — 7x) is proportional
to a normal distribution. The second condition is not generally crucial pro-
vided the number of spikes in each trial is not too small; this follows from
the central limit theorem. The first condition is the most worrisome, since
the spike times are random only for Poisson spike trains. For non-Poisson
spike trains, we know of no result that specifies the null distribution of F,
and thus we will have to either derive it theoretically or obtain an approx-
imation using a bootstrap simulation. The first option is too daunting, if at
all possible, so we chose the second.

4.1 Bootstrap Inference. In this section, we provide general bootstrap
simulation algorithms for tests and confidence intervals, (see Davison and
Hinkley, 1997, for a complete bootstrap treatment). Theoretical and boot-
strap results are compared in the Poisson case, where we can get both.

Let T denote a test statistic and ¢, its value in the sample. For the global
test, T is the ANOVA F-statistic (see equation 4.1), and for a pairwise test, T
is the two-sample t-statistic, or equivalently the F-statistic (see equation 4.1)
evaluated for the two trials under consideration. A general bootstrap testing
algorithm follows:

Bootstrap Testing
1. Forr=1---R

(a) Create bootstrap sample r that satisfies the null
hypothesis Hpy. Options are described below.

(b) Calculate tf, the value of the test statistic T in
bootstrap sampler.

2. The histogram of the R values of t:‘ approximates the
null distribution of T. The bootstrap p-value that
approximates the exact p-value in equation4.2 is:

1+ #{t;k > tobs)

R+1 (4.6)

Phoot =
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For Poisson spike trains, bootstrap samples in step 1a can be obtained
parametrically or nonparametrically as follows (see Cowling, Hall, &
Phillips, 1996, for other sampling options):

Poisson Bootstrap Sample

e Nonparametric. (i) Combine the spike times of allKtrials.
(i) Sample m. = Y m spike times from the set of
combined spike times, and form the new spike trains
by allocating the firstn; spikes to triall,the nextmnp
spikes to trial?2,...,and the last ng spikes to trial K.

° Parametric.(i)Estimateio(t),the firing rate of the neuron
based on the PSTH of the unshifted trials. (ii) For k =
1,...,K, form trial k by generating mn; spikes from a
Poisson process with mean io(t).

Standard methods to estimate firing rates are gaussian filtering and spline
smoothing (see Ventura, Carta, Kass, Olson, & Gettner, 2001).

Figures 4C and 4D show histograms of R = 1000 values of ¢! for two
sample of K = 100 Poisson spike trains, where T is the F-statistic (see equa-
tion 4.1) for the global latency test. Parametric and nonparametric boot-
straps produced indistinguishable results. The data in Figure 4C have Hy
true (equal latencies), whereas Figure 4D used data with true latencies uni-
formly distributed on [400, 1000] msec. The Fisher F-distribution is overlaid;
it matches the two histograms almost perfectly, as we would expect, since

Figure 4: Facing page. (A) 95% confidence intervals for the latency estimates of
the trials in the raster plot, and K x K matrix of p-values of all pairwise latency
tests. Black: P > 5%; gray: 1% < P < 5%; white: P < 1%. The spike trains are
Poisson with block(20,60) rate, latencies 400 msec for the first 50 trials, and 700
msec for the other 50 trials. (B) Same as A but for gamma(8) spike trains. (C,
D) Asymptotic F-approximation (solid curves) and bootstrap null distributions
(histograms) for the F-statistic (see equation 4.1), with observed values f,,, indi-
cated by vertical lines. The spike trains are Poisson with block(20,60) rate, with
(C) no latencies, and (D) latencies uniformly distributed on [400, 1000] msec.
(E) Bootstrap gamma (histogram), bootstrap IMI (bold curve), and bootstrap
Poisson (dotted curve) null distributions for the test F-statistic (see equation 4.1)
with observed values f,;; indicated by the vertical line, based on gamma(8) spike
trains with block(20,60) rate and latencies uniformly distributed on [400, 600]
msec. (We use latencies in [400, 600] msec rather than in [400, 1000] msec so that
fobs is within the frame of the plot.) (F) Bootstrap gamma (histograms) and boot-
strap IMI (curves) null distributions of (see equation 4.1) based on gamma(2),
gamma(1l), that is, Poisson, and gamma(1/2) spike trains with block(20,60) rate
and latencies uniformly distributed on [400, 600] msec. The dotted curve on the
middle panel is the asymptotic F-approximation.
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the spike times are random, and the number of trials is large enough that
the firing rate does not have to be bell shaped. The bootstrap and F-test
p-values, equations 4.6 and 4.2, are very close, and for both data sets, we
take the appropriate decision: reject Hy for Figure 4D, with the conclusion
that latencies vary across trials, and fail to reject Hy for Figure 4C.

The dashed curves in Figure 4E are the null distribution of equation 4.1
obtained by Poisson bootstrap and F approximation, this time for gamma(8)
rather than Poisson spike trains, with latencies uniformly distributed on
[400, 600] msec. Once again, both distributions are practically identical, and
thus they are indistinguishable in the plot, with corresponding p-values
equations 4.2 and 4.6 equal to 88.9%; we fail to reject Hy, which is the wrong
decision. Also plotted as a histogram is the parametric bootstrap null distri-
bution from a gamma(8) rather than a Poisson model, with rate Ao (b fitted
to the unshifted spike trains via gaussian filtering. The resulting null dis-
tribution is approximately the “correct” one, since the correct model was
used. The corresponding bootstrap p-value equation 4.6, is zero so that we
now reject Hy, the correct decision. Figure 4E illustrates that the validity of
a test (bootstrap or not) requires an appropriate model for the data, from
which bootstrap samples can be simulated. Model selection for spike trains
is discussed briefly in section 4.2.

Now a few remarks about bootstrap testing are important. A bootstrap
sample should be in every way similar to the observed sample—hence the
need for an appropriate model. In the context of statistical testing, boot-
strap samples should also conform to the hypothetical reality imposed by
Hy. Here, Hy forces us to assume that the trials have a common firing rate,
even if we see with the naked eye that they do not. Both our parametric and
nonparametric bootstraps did satisfy Hp: the implicitly (combined spikes)
and explicitly estimated common firing rate NG) ignored any latency ef-
fects, since we fitted the same firing rate to all trials.

If the data also contain excitability effects, the bootstrap samples must
also contain that extra source of variability. (This issue is developed further
in Cai, Kass, & Ventura, 2004.)

The confidence intervals, equation 4.3, hold for Poisson and non-Poisson
spike trains since they are based on the central limit theorem, but the es-
timate of o proposed in equation 4.5 is valid for Poisson data only. We
provide a bootstrap alternative that is valid for any spike trains:

Bootstrap Standard Deviations
1. Forr=1---R

(a) Create bootstrap sampler.

(b) For each spike traink=1,...,Kin bootstrap sample
7, calculate the mean tzr of the spike times.
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2. Fork=1,...,K, the bootstrap estimate of O’k2 is the sam-

ple variance of theftf,

R Z* _ iT* 2 B B
6,(2 = er_l};kfrlk) where ff = R! thr.

Note that unlike for testing, the model used to simulate bootstrap samples
in step 1a should be fitted to the spike trains first shifted according to the
latency estimates. Indeed, the final latency estimates are based on shifted
trials.

We applied the standard deviation bootstrap algorithm to Poisson and
gamma(8) spike trains. In the Poisson case, we obtained bootstrap standard
deviations comparable to the analytic result in equation 4.5. The bootstrap
standard deviations for gamma(8) spike trains were used to calculate the
confidence intervals in Figure 4B.

In this section, we have shown that the bootstrap compares well to
asymptotic results in the Poisson case, which gives it credibility when no
such asymptotic results are available. For Poisson spike trains, it will be safe
to use the theoretical results, unless the numbers of trials or spikes are very
small, or the firing rate is very dissimilar in shape to a normal density; in
doubt, a bootstrap test is also easily done. For non-Poisson spike trains, all
we need to perform bootstrap inference is an appropriate model fitted to
the observed data, from which bootstrap samples can be simulated.

4.2 Model Selection for Spike Trains. The quality of any test, bootstrap
or not, depends on how well the chosen model fits the data; by quality, we
refer to how well the actual significance level of the test matches the nominal
one. This is illustrated below.

Model selection, for spike trains or any other data, involves proposing
competing models and determining which fits the data best. Reich, Victor,
and Knight (1998) introduced the power ratio statistic to test whether spike
trains can be completely characterized by an inhomogeneous firing rate.
Brown, Barbieri, Ventura, Kass, and Frank (2002) proposed a goodness-of-
fit test based on the time rescaling theorem; a goodness-of-fit test determines
if a particular model appears to fit, without requiring an alternative model.
In the case where two competing models can be fit by maximum likelihood,
it is standard to use the likelihood ratio (LR) test; common tests like ¢-tests,
and ANOVA F-tests are LR tests; Pearson chi-squared tests are asymptotic
approximations to LR tests.

The space of models is infinite, so an exhaustive model search is unrealis-
tic, as is the search for the “true” model. A good start is to consider the point
process models that have been found to fit some neural data well, for exam-
ple, inhomogeneous renewal processes, Poisson processes with refractory
periods and integrate-and-fire models. (Barbieri, Quirk, Frank, Wilson, &
Brown, 2001; Johnson, 1996; Reich et al., 1998). We also like to consider the
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inhomogeneous Markov interval (IMI) models of Kass and Ventura (2001)
because they include as particular cases inhomogeneous Poisson and ho-
mogeneous renewal process models, and thus are well suited to fit data that
do not deviate much from these two large classes of models.

To illustrate these ideas, consider once more the gamma(8) spike trains
used in Figure 4E. Likelihood ratio tests were performed to compare Pois-
son, gamma(8), and IMI models; the (true) gamma(8) model was favored
over the others (P < 1073). For the sake of illustration, we still performed a
parametric bootstrap based on the IMI model, with resulting null distribu-
tion overlaid as a bold curve; it is much closer to, although not equal to, the
gamma bootstrap null distribution than the bootstrap Poisson distribution
was. The discrepancy between the IMI and the correct gamma(8) bootstrap
null distributions happens because inhomogeneous renewal processes are
not IMI models (only homogeneous renewal processes are). The test based
on the IMI bootstrap is conservative, so that the actual significance level is
much smaller than the nominal level.

Figure 4F is the same as Figure 4E, but based on simulated gamma(q)
spike trains with g = 2, 1, and 0.5, which are, respectively, less, as, and more
variable than Poisson spike trains; the F approximation was also plotted
(dotted curve) in the middle panel. Although the IMI bootstrap null distri-
butions do not quite match their gamma counterparts, these plots suggest
that the IMI model yields reasonable inference for data that are close to
Poisson or renewal processes.

5 Applications

This section illustrates our latency testing and estimation method based on
two examples rather than draws conclusions about the functional charac-
teristics of the types of neurons we used.

5.1 Correlating Neural Activity and Behavior. Individual neurons in
the frontal eye field of a rhesus monkey were recorded while the animal
performed a memory-guided saccade task or a delayed-response task, as
described in Roesch and Olson (2003). Figure 5 shows the PSTH of 20 iden-
tical trials of a particular neuron in that experiment. The cue indicating the
direction of eye movement is presented for the short period between the
two vertical bars. After a waiting period, the central light is turned off at
time t = 0, at which point the monkey is to execute the eye movement. For
each trial, the onset of movement was recorded. We want to investigate if
the latency of neural response predicts (or is correlated with) the onset of
movement.

Before we apply the latency test, we check if the spike trains are Poisson.
The mean versus variance plot in Figure 5A suggests that the deviation from
the Poisson assumption is minimal; this is confirmed by the goodness-of-
fit test of Brown et al. (2002; not shown). The test of Cai et al. (2004) did
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not detect any excitability effects. We thus used the simple latency test of
section 4. The global test for latencies suggests strongly that latencies vary
across trials, with a p-value smaller than 1078, Figure 5C shows the overlaid
smoothed PSTHs of the original and shifted trials; as expected, the latter is
slightly higher.

The latency estimates were robust to the choice of all estimation windows
[T1, T7] within the guidelines of section 3. Figure 5B shows the latency es-
timates plotted against the time of onset of movement, with latencies and
onsets, respectively, recentered to have sample mean zero. We conclude
that for this particular neuron, there exists a strong correlation (0.72, with
P < 0.00001) between the latency of the neural response to the stimulus and
the onset of eye movement.

5.2 Adjusting the Cross-Correlogram for Latency Effects. The raw CC
displays the correlation between the spike trains of two neurons at a series
of time lags. It is not used directly to assess synchrony, because other cor-
relation sources typically contribute to it. The most common such source
is due to modulations in firing rates following some experimental stimu-
lus, although it is easily accounted for by subtracting the shuffle corrector
(Perkel, Gerstein, & Moore, 1967). However, the remaining features in the
shuffled corrected CC merely indicate that sources of correlation other than
stimulus-induced correlations exist between the two neurons. A potential
source is synchrony, but other sources include variations in firing rates’” am-
plitudes and in latencies, which Brody (1999a, 1999b) refers to as excitability
and latency effects. Baker and Gerstein (2001) provide a list of references
that report such effects. Therefore, for the CC to be a useful and reliable
tool of synchrony assessment, it must be adjusted for all possible sources of
correlation other than synchrony. The customary way to account for latency
effects is to estimate the latencies, realign the spike trains, and proceed with
the shifted spike trains as one would with usual spike trains (Brody, 1999b;
Baker & Gerstein, 2001).

We illustrate our latency testing and estimation on two neurons recorded
simultaneously in the primary visual cortex of an anesthetized macaque
monkey Aronov, Reich, Mechler, & Victor, 2003, Figure 1B, units 40106.st;
67.5 degrees spatial phase; other spatial phases produced similar results).
The data consist of 64 trials shown in Figure ??B. The stimulus is identical
for all trials, and consists of a standing sinusoidal grating that appears at
time 0 and disappears at 237 msec.

The mean versus variance plots in Figure ??A lie somewhat above the
diagonal, which suggests more variability than predicted under the Poisson
assumption. The goodness-of-fit tests of Brown et al. (2002) in Figure ??A
indeed confirm that the data deviate slightly from Poisson, since the em-
pirical versus model quantiles curves do not lie completely within the 99%
joint confidence bands. The IMI model provides a better fit, although the
improvement is only marginal. The slight deviation from Poisson could be
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Figure 5: (A) PSTH for a neuron in Roesch and Olson (2003), based on 20 iden-
tical trials. The cue indicating the direction of the eye movement is presented
between the two vertical bars; the cue for the movement is at time t = 0. Mean
versus variance plot of the spike trains, based on time bins ranging from 2 to 20
msec. The solid line is the first diagonal. (B) Onset of movement versus neural
response latency estimates. The solid line is the first diagonal, and the dotted
line the fitted linear regression of onset on latency. Raster plot of the 20 spike
trains with filled circles marking the latency estimate and open circles the onset
of movement. (C) Overlaid smoothed PSTHs and raster plots of the original and

shifted trials.
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partly due to excitability effects, which were found to be significant based
on the test for excitability in Cai et al. (2004). Although the deviations from
the Poisson model may be important from a functional standpoint, they are
not large enough from a statistical standpoint to warrant the more compli-
cated bootstrap procedures for non-Poisson spike trains, especially since
the evidence for latency effects is overwhelming, as discussed below.

Figure 6B shows the raster plots for the two neurons, from which it
appears that the few first and last trials have latencies that differ from those
of the other trials. This is confirmed by the global tests for latencies, with
a p-value 0.045 for neuron 2, and p-values smaller than 1078 for neuron 1
and for the two neurons combined. Lack of statistical power for neuron 2 is
due to the sparseness of the spikes. The value of the test statistic for neuron
1 is t,ps = 3.3, which is extreme enough as to leave no doubt about the
presence of latency effects, under Poisson, gamma or IMI models. Figure 6B
also shows the matrix of p-values for all pairs of trials for the two neurons
combined, with white and gray pixels corresponding to p-values smaller
than 1% and 5%, respectively. If all trials had equal latencies, we would
expect about 5% of white and gray pixels, whereas we have about 30%. This
confirms the outcome of the global tests. Additionally, there is a clear pattern
in the pairwise p-values; the mostly black area in the middle indicates that
the latencies of all trials are similar, except for the first few and last trials, as
could in fact be seen by the naked eye on the raster plots.

Next, we estimated the latencies for the two neurons separately. The
presence of excitability effects is not of overwhelming concern because the
estimation windows [T, T2], shown in Figure 6B, are short enough that the
effects on these intervals are presumably well approximated by equation 3.2.
Figure 6B shows a plot of the latency estimates of one neuron versus the
other, which shows that the two sets of latencies covary, with correlation
0.69. To shift the spike trains, we used the latency estimates based on the
combined spikes of the two neurons (see section 2.2) because they are less
variable.

Finally, Figure 6C shows CC for these data, corrected for the correla-
tion induced by modulations of the firing rates, along with 95% confidence
bands. The left-most panel is for the observed spike trains, from which one
may conclude that there is synchronous activity at small lags. However,
these effects disappear entirely once the CC is adjusted for correlations in-
duced by the latencies. We also produced a CC based on the observed spike
trains, after removing the few first and last trials that appear to have differ-
entlatencies. This CCis qualitatively similar to the CC adjusted for latencies,
although the confidence bands are wider because fewer trials are used.

6 Conclusion

We have developed statistical procedures for testing and estimating latency
effects in spike trains obtained from identical repeats of an experiment. The
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main attractions of our methods are their simplicity. Moreover, they appear
to be efficient and powerful based on a large number of simulated spike
trains. We also applied our methods to two real data sets and obtained
results that seem reasonable.

We proposed a formal statistical procedure to test for unequal latencies
across trials; by “formal,” we mean that we provide not only a diagnostic test
but also a p-value. For Poisson spike trains, this test is the usual analysis of
variance (ANOVA) test for the equality of several means. For non-Poisson
spike trains, we still use the ANOVA F-statistic, although we obtain its
null distribution via a parametric bootstrap. We use an inhomogeneous
Markov interval (IMI) model to fitnon-Poisson spike trains when competing
parametric models do not fit the data as well.

Our estimation method consists of finding the set of shifts that minimizes
the spread of the resulting PSTH. We show that this minimization criterion
is equivalent to finding the shifts so that the means of the shifted spike times
are equal in all trials. Therefore, our estimates require calculations only of
sample means so that they are simple and very fast to obtain, and they do
not require any model assumptions. We applied our method successfully
to Poisson and non-Poisson spike trains with various rates, including spike
trains that contain simple multiplicative excitability effects.

In situations where more complicated excitability effects are present, our
estimates can bebiased, so it may be preferable to use a change-point method
as, for example, in Baker and Gerstein (2001). But our latency estimates
can still be used as starting values in other latency estimation algorithms.
Indeed, change-point methods are based on detecting the rate change from
baseline, typically on each trial separately, so that the latency estimates thus
obtained do not benefit from any information that may be contained in other
trials. Our method is based on the differences in firing rate from trial to trial.
Including this extra information in change-point estimation procedures is
likely to improve them.

Figure 6: Facing page. (A) Mean versus variance plots and goodness-of-fit tests
for Poisson and IMI models (Brown et al. 2002) for two simultaneously recorded
neurons in the primary visual cortex of an anesthetized macaque monkey (Aronov
et al., 2003). (B) Raster plots with estimation windows [T, T>] (top), and after
the trials are shifted (bottom). Matrix of p-values for all pairwise tests (see sec-
tion 4). Estimates of latencies for neuron 1 plotted against those of neuron 2, with
(0,1) line (solid) and fitted linear regression (dotted line), and sample Pearson
correlation. (C) Cross-correlograms adjusted for firing-rate modulation (shuffle
corrected) and 95% confidence bands for the observed and the shifted spike
trains, as well as for the observed trials that appear to have constant latencies.
We used bins of 1.3 msec. The central bin is not plotted because a recording
artifact prevents testing of synchrony at lag 0.
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Our latency estimates are obtained thus far in a completely nonpara-
metric way. We do not assume a particular model for the firing rate or for
the spike generation mechanism; spike trains do not have to be Poisson
or gamma. But the absence of a specific model does not preclude assump-
tions; in particular, our procedure produces meaningful estimates under
the basic assumption that the firing rates for all trials are proportional to
one another except for a time shift. This begs for two extensions. First, if
the basic assumption is met, can we improve our procedure by explicitly
making use of the common element, that is, A, between all trials? If the basic
assumption is not appropriate—for example, if more complicated excitabil-
ity effects exist—can we modify the procedure to allow for this? Our answer
to both questions involves a more statistical approach than we have used.
A full treatment is beyond the scope of this article, and is, in fact, the topic
of a future article that treats the estimation, and adjustment, of latency and
excitability effects (Cai et al., 2004).
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