Vinci, G., Ventura, V., Smith, M.A., and Kass, R.E. (2016) Separating spike count correlation from firing rate correlation , Neural Computation, to appear.

Zhou, P., Burton, S.D., Snyder, A.C., Smith, M.A., Urban, N.N. and Kass, R.E. (2015) Establishing a statistical link between network oscillations and neural synchrony, PLOS Computational Biology, 11: e1004549. doi: 10.1371/journal.pcbi.1004549

Kass, R.E. (2015) The gap between statistics education and statistical practice. (Comment on "Mere renovaton is too little too late: we need to re-think our undergraduate curriculum from the ground up" by George Cobb), *The American Statistician, 69. Online Discussion: Special Issue on Statistics and the Undergraduate Curriculum.*.

Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P. and Kass, R.E. (2015) False discovery rate regression: an application to neural synchrony detection in primary visual cortex , Journal of the American Statistical Association, 110: 459-471.

Hefny, A., Kass, R.E., Khanna, S., Smith, M., and Gordon, G.J. (2015) Fast and improved SLEX analysis of high-dimensional time series , in Machine Learning and Interpretation in Neuroimaging: Beyond the Scanner, Lecture Notes on Artificial Intelligence, edited by G. Cecchi, K.K. Chang, G. Langs, B. Murphy, I. Rish, and L. Wehbe, Springer, to appear.

Yang, Y., Tarr, M.J., and Kass, R.E. (2015) Estimating learning effects: a short-time Fourier transform regression model for MEG source localization , in Machine Learning and Interpretation in Neuroimaging: Beyond the Scanner, Lecture Notes on Artificial Intelligence, edited by G. Cecchi, K.K. Chang, G. Langs, B. Murphy, I. Rish, and L. Wehbe, Springer, to appear.

Wang, W., Tripathy, S.J., Padmanabhan, K., Urban, N.N., and Kass, R.E. (2015) An empirical model for reliable spiking activity , Neural Computation, August 2015, 27: 8, 1609--1623.

Castellanos, L., Vu, V.Q., Perel, S., Schwartz, A., and Kass, R.E. (2015) A multivariate Gaussian process factor analysis model for hand shape during reach-to-grasp movements , Statistica Sinica, 25: 5-24. supplementary material

Kass, R.E. (2014) Spike train , in * Encyclopedia of Computational Neuroscience, * edited by D. Jaeger and R. Jung. Springer.

Kass, R.E. and many others (2014) Statistical Research and Training Under the BRAIN Initiative , report of a working group of the American Statistical Association.

Harrison, M.T., Amarasingham, A., and Kass, R.E. (2013) Statistical identification of synchronous spiking.
In * Spike Timing: Mechanisms and Function, * edited by P. Di Lorenzo and J. Victor. Taylor and Francis, pp. 77-120.

Koyama, S., Omi, T., Kass, R.E. and Shinomoto, S. (2013) Information transmission using non-Poisson regular firing, Neural Computation, 25: 854-876.

Kelly, R.C. and Kass, R.E. (2012) A framework for evaluating pairwise and multiway synchrony among stimulus-driven neurons, Neural Computation, 24: 2007-2032. (Note: title of first draft was "Detecting multi-way synchrony in the presence of two-way synchrony among stimulus-driven neurons.")

Zhang, Y., Schwartz, A.B., Chase, S.M., and Kass, R.E. (2012) Bayesian learning in assisted brain-computer interface tasks, Engineering in Medicine and Biology, 2012 Annual International Conference of the IEEE (EMBC), 2740-2743.

Xu, Y., Sudre, G.P., Wang, W., Weber, D.J., and Kass, R.E. (2011) Characterizing global statistical significance of spatio-temporal hot spots in MEG/EEG source space via excursion algorithms, Statistics in Medicine, 30: 2854--2866.

Kass, R.E. (2011) Statistical inference: the big picture, with discussion by Andrew Gelman, discussion by Steven Goodman, discussion by Rob McCulloch, discussion by Hal Stern, and rejoinder , Statistical Science, 26: 1-20.

Kass, R.E., Kelly, R.C., and Loh, W.-L. (2011) Assessment of synchrony in multiple neural spike trains using loglinear point process models, Annals of Applied Statistics, 5: 1262--1292.

Chase, S.M., Schwartz, A.B., and Kass, R.E. (2010) Latent inputs improve estimates of neural encoding in motor cortex, Journal of Neuroscience, 30: 13873-13882.

Kelly, R.C, Smith, M.A., Kass, R.E., and Lee, T.-S. (2010) Accounting for network effects in neuronal responses using L1 penalized point process models, Advances in Neural Information Processing Systems, 23.

Kelly, R.C., Smith, M.A., Kass, R.E., and Lee, T.-S. (2010) Local field potentials indicate network state and account for neuronal response variability, Journal of Computational Neuroscience, 29: 567--579.

Koyama, S., Castellanos Perez-Bolde, L., Shalizi, C.R., and Kass, R.E. (2010) Approximate methods for state-space models, Journal of the American Statistical Association, 105: 170-180. DOI: 10.1198/jasa.2009.tm08326.

Koyama, S., Chase, S.M., Whitford, A.S., Velliste, M., Schwartz, A.B., and Kass, R.E.(2010) Comparison of brain-computer interface decoding algorithms in open-loop and closed-loop control, Journal Computational Neuroscience, 29: 73--87.

Tokdar, S., Xi, P., Kelly, R.C., and Kass, R.E. (2010) Detection of bursts in extracelluar spike trains using hidden semi-Markov point process models, Journal of Computational Neuroscience, 29: 203--212.

Wang, W., Sudre, G.P., Xu, Y., Kass, R.E., Collinger, J.L., Degenhart, A.D., Bagic, A.I., and Weber, D.J. (2010) Decoding and cortical source localization for intended movement direction with MEG, Journal of Neurophysiology, 104: 2451--2461.

Behseta, S., Berdyyeva, T., Olson, C.R., and Kass, R.E. (2009) Bayesian correction for attenuation of correlation in multi-trial spike count data, Journal of Neurophysiology, 101:2186-2193.

Brown, E.N. and Kass, R.E. (2009) What is Statistics? (with discussion), American Statistician, 63:105-123.

Chase, S.M., Schwartz, A.B., and Kass, R.E. (2009) Bias, optimal linear estimation, and the differences between open-loop simulation and closed-loop performance of spiking-based brain computer interface algorithms, Neural Networks, 22:1203-1213.

Kass, R.E. (2009) The importance of Jeffreys's Legacy (Comment on Robert, Chopin, and Rousseau) Statistical Science, 24: 2, 179-182.

Vu, V.Q., Yu, B. and Kass, R.E. (2009) Information in the non-stationary case, Neural Computation, 21:688-703.

Jarosiewicz, B., Chase, S.M., Fraser, G.W., Velliste, M. Kass, R.E., and Schwartz, A.B.(2008) Functional network reorganization during learning in a brain-machine interface paradigm, Proceedings of the National Academy of Sciences,105:19486-19491.

Koyama, S. and Kass, R.E. (2008) Spike train probability models for stimulus-driven leaky integrate-and-fire neurons, Neural Computation, 20:1776-1795.

Wallstrom, G., Liebner, J., and Kass, R.E. (2008) An implementation of Bayesian Adaptive Regression Splines (BARS) in C with S and R wrappers, Journal of Statistical Software, 26: 1-25. (online at http://www.jstatsoft.org).

Behseta, S., Kass, R.E., Moorman, D. and Olson, C. (2007) Testing Equality of Several Functions: Analysis of Single-Unit Firing Rate Curves Across Multiple Experimental Conditions, Statistics in Medicine, 26: 3958-3975.

Brockwell, A.E., Kass, R.E., and Schwartz, A.B. (2007) Statistical signal processing and the motor cortex, Proceedings of the IEEE, 95: 881-898.

Vu, V.Q., Yu, B., and Kass, R.E. (2007) Coverage Adjusted Entropy Estimation Statistics in Medicine, 26: 4039-4060.

Kass, R.E. (2006) Kinds of Bayesians (Comment on articles by Berger and by Goldstein), Bayesian Analysis, 1: 437-440.

Kass, R.E. and Ventura, V. (2006) Spike count correlation increases with length of time interval in the presence of trial-to-trial variation, Neural Computation, 18:2583-2591.

Behseta, S., Kass, R.E., and Wallstrom, G.L. (2005) Hierarchical models for assessing variability among functions, Biometrika, 92: 419-434.

Behseta, S. and Kass, R.E. (2005) Testing Equality of Two Functions using BARS, Statistics in Medicine, 24:3523-34.

Kass, R.E., Ventura, V., and Brown, E.N. (2005) Statistical issues in the analysis of neuronal data, Journal of Neurophysiology, 94: 8-25.

Kaufman, C.G., Ventura, V., and Kass, R.E. (2005) Spline-based nonparametric regression for periodic functions and its application to directional tuning of neurons, Statistics in Medicine, 24: 2255-2265.

Ventura, V., Cai, C., and Kass, R.E. (2005) Statistical assessment of time-varying dependence between two neurons, Journal of Neurophysiology, 94: 2940-2947.

Ventura, V. Cai, C., and Kass, R.E. (2005) Trial-to-trial variability and its effect on time-varying dependence between two neurons, Journal of Neurophysiology, 94: 2928-2939.

Brockwell, A.E., Rojas, A.L., and Kass, R.E. (2004) Recursive Bayesian decoding of motor cortical signals by particle filtering, Journal of Neurophysiology, 91: 1899--1907.

Brown, E.N., Kass, R.E., and Mitra, P.N. (2004) Multiple neural spike trains analysis: state-of-the-art and future challenges. Nature Neuroscience, 7: 456--461.

Wallstrom, G.A., Kass, R.E., Miller, A., Cohn, J.F., and Fox, N.A.(2004) Automatic correction of ocular artifacts in the EEG: A comparison of regression-based and component-based methods, International Journal of Psychophysiology, 53: 105--119.

Kass, R.E., Ventura, V. and Cai, C. (2003) Statistical smoothing of neuronal data, Network: Computation in Neural Systems, 14: 5--15.

Brown, B.N., Barbieri, R, Ventura V., Kass R.E., and Frank L.M. (2002) The time-rescaling theorem and its applications to neural spike train data analysis, Neural Computation, 14: 325--346.

Ventura V., Carta R., Kass R.E., Gettner, S.N., and Olson, C.R., (2002) Statistical analysis of temporal evolution in single-neuron firing rates, Biostatistics, 1: 1--20.

Wallstrom, G.L, Kass, R.E., Miller, A., Cohn, J.F., and Fox, N.A. (2002) Correction of ocular artifacts in the EEG using Bayesian adaptive regression splines, in Case Studies in Bayesian Statistics, Vol VI, eds. Gatsonis, C., Carriquiry, A., Higdon, D., Kass, R.E., Pauler, D., and Verdinelli, I., pp. 351-366, Springer-Verlag.

DiMatteo, I., Genovese, C.R., and Kass, R.E. (2001) Bayesian curve-fitting with free-knot splines, Biometrika, 88: 1055-1071.

Kass, R.E., and Ventura, V. (2001) A spike-train probability model, Neural Computation, 13: 1713-1720.

Kass, R.E. (1998) Comment on R.A. Fisher in the 21st Century, by Bradley Efron, Statistical Science, 13: 95-122

Kass, R.E. and Wasserman, L.A. (1996) The selection of prior distributions by formal rules, Journal of the American Statistical Association, 91: 1343-1370.

Kass, R.E. and Wasserman, L.A. (1995) A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion, Journal of the American Statistical Association, 90: 928-934.

Kass, R.E. and Raftery, A. (1995) Bayes Factors, Journal of the American Statistical Association, 90: 773-795.

Kass, R.E. (1991) More about "Theory of Probability" by H. Jeffreys, Chance, 4: no. 2, p. 13.

Kass, R.E. (1990) Data-translated likelihood and Jeffreys's rules, Biometrika, 77: 107-114.

Kass, R.E., Tierney, L. and Kadane, J.B. (1990) The validity of posterior expansions based on Laplace's method, Essays in Honor of George Bernard, eds. S. Geisser, J.S. Hodges, S.J. Press, and A. Zellner, Amsterdam: North Holland, 473-488.

Kass, R.E. and Steffey, D. (1989) Approximate Bayesian inference in conditionally independent hierarchical models (parametric empirical Bayes modes), Journal of the American Statistical Association, 84: 717-726.

Tierney, L., Kass, R.E. and Kadane, J.B. (1989) Fully exponential Laplace approximations to posterior expectations and variances, Journal of the American Statistical Association, 84: 710-716.

Kass, R.E. (1989) The geometry of asymptotic inference (with discussion) Statistical Science, 4: 188-234.